Pseudorandom Functions and Lattices

Abhishek Banerjee¹

Chris Peikert¹ Alon Rosen²

¹Georgia Institute of Technology

²IDC Herzliya

EUROCRYPT '12 19 April 2012

2 Learning with Rounding

2 Learning with Rounding

Pseudorandom Functions [GGM'84]

• A family of functions $\mathcal{F} = \{F_s : \{0,1\}^k \to B\}$ such that, given adaptive query access,

(Thanks to Seth MacFarlane for the adversary)

Pseudorandom Functions [GGM'84]

• A family of functions $\mathcal{F} = \{F_s : \{0,1\}^k \to B\}$ such that, given adaptive query access,

• Lots of applications in symmetric key cryptography: encryption, message authentication, friend or foe identification...

(Thanks to Seth MacFarlane for the adversary)

Cooking a PRF

- () "Man-made": AES, Blowfish...
 - Fast and secure against known cryptanalytic techniques

- "Man-made": AES, Blowfish…
 - Fast and secure against known cryptanalytic techniques
 - Want provable security based on a natural hard problem

- Fast and secure against known cryptanalytic techniques
- Want provable security based on a natural hard problem
- Goldreich-Goldwasser-Micali [GGM'84]
 - Based on any (doubling) PRG. $F_s(x_1, \ldots, x_k) = G_{x_k}(\ldots(G_{x_1}(s))\ldots)$

- Fast and secure against known cryptanalytic techniques
- Want provable security based on a natural hard problem

Goldreich-Goldwasser-Micali [GGM'84]

• Based on any (doubling) PRG. $F_s(x_1, \ldots, x_k) = G_{x_k}(\ldots(G_{x_1}(s))\ldots)$

• Sequential: at least k iterations

- Fast and secure against known cryptanalytic techniques
- Want provable security based on a natural hard problem
- Goldreich-Goldwasser-Micali [GGM'84]
 - Based on any (doubling) PRG. $F_s(x_1, \ldots, x_k) = G_{x_k}(\ldots (G_{x_1}(s)) \ldots)$
 - Sequential: at least k iterations
- Direct constructions [NR'95, NR'97, NRR'00]
 - Parallel and theoretically efficient
 - Security based on number-theory (DDH, factoring...)

- Fast and secure against known cryptanalytic techniques
- Want provable security based on a natural hard problem
- Goldreich-Goldwasser-Micali [GGM'84]
 - Based on any (doubling) PRG. $F_s(x_1, \ldots, x_k) = G_{x_k}(\ldots (G_{x_1}(s)) \ldots)$
 - Sequential: at least k iterations
- Direct constructions [NR'95, NR'97, NRR'00]
 - Parallel and theoretically efficient
 - Security based on number-theory (DDH, factoring...)
 - Not practically efficient (huge exponentiations), lots of preprocessing
 - What about a "post-quantum" world?

Lattices

A periodic grid in the *n*-dimensional Euclidean space

Lattices

A periodic grid in the *n*-dimensional Euclidean space

Advantages of Lattice Crypto Schemes

- Simple & efficient: linear, highly parallel operations
- Resist quantum attacks (so far)
- Secure under worst-case hardness assumptions [Ajt'96,...]

Lattices

A periodic grid in the *n*-dimensional Euclidean space

Advantages of Lattice Crypto Schemes

- Simple & efficient: linear, highly parallel operations
- Resist quantum attacks (so far)
- Secure under worst-case hardness assumptions [Ajt'96,...]

Lattice-based Pseudorandomness?

- Only known PRF is generic GGM, no direct constructions
- Security proofs based on hard lattice problems need fresh biased errors

* Low-depth, highly efficient PRFs from (ring-)LWE

- \star Low-depth, highly efficient PRFs from (ring-)LWE
 - * Synthesizer-based PRF in $TC^1 \subseteq NC^2$ a la [NR'95]
 - \star Direct construction in $\mathsf{TC}^0\subseteq\mathsf{NC}^1$ analogous to [NR'97,NRR'00]

- \star Low-depth, highly efficient PRFs from (ring-)LWE
 - ★ Synthesizer-based PRF in $TC^1 \subseteq NC^2$ a la [NR'95]
 - \star Direct construction in $\mathsf{TC}^0\subseteq\mathsf{NC}^1$ analogous to [NR'97,NRR'00]
- * Main technique "derandomizing" LWE: deterministic errors

- \star Low-depth, highly efficient PRFs from (ring-)LWE
 - ★ Synthesizer-based PRF in $TC^1 \subseteq NC^2$ a la [NR'95]
 - \star Direct construction in $\mathsf{TC}^0\subseteq\mathsf{NC}^1$ analogous to [NR'97,NRR'00]
- Main technique "derandomizing" LWE: deterministic errors
 Gives more practical PRGs to feed in GGM

- ★ Low-depth, highly efficient PRFs from (ring-)LWE
 - ★ Synthesizer-based PRF in $TC^1 \subseteq NC^2$ a la [NR'95]
 - \star Direct construction in $\mathsf{TC}^0\subseteq\mathsf{NC}^1$ analogous to [NR'97,NRR'00]
- Main technique "derandomizing" LWE: deterministic errors
 Gives more practical PRGs to feed in GGM

Full version: http://eprint.iacr.org/2011/401

2 Learning with Rounding

(Ring-) Learning with Errors: (R)LWE [Reg'05, Pei'09, LPR'10]

• For n a power of 2 (say), define "cyclotomic" polynomial rings

 $R:=\mathbb{Z}[x]/(x^n+1) \quad \text{and} \quad R_q:=R/qR=\mathbb{Z}_q[x]/(x^n+1)$

(Ring-) Learning with Errors: (R)LWE [Reg'05, Pei'09, LPR'10]

• For n a power of 2 (say), define "cyclotomic" polynomial rings

 $R:=\mathbb{Z}[x]/(x^n+1) \quad \text{and} \quad R_q:=R/qR=\mathbb{Z}_q[x]/(x^n+1)$

• (R)LWE Problem:

$$\begin{array}{|c|c|c|c|c|}\hline (a_i,a_i\cdot s+e_i) & \stackrel{c}{\approx} \hline (a_i,b_i) \in R_q \times R_q \\ & s \in R_q \text{ uniform and fixed} \\ & e_i \text{ Gaussian} \end{array}$$

Hardness based on worst case (ideal-)lattice problems [LPR'10]

(Ring-) Learning with Errors: (R)LWE [Reg'05, Pei'09, LPR'10]

• For n a power of 2 (say), define "cyclotomic" polynomial rings

 $R:=\mathbb{Z}[x]/(x^n+1) \quad \text{and} \quad R_q:=R/qR=\mathbb{Z}_q[x]/(x^n+1)$

• (R)LWE Problem:

$$\begin{array}{c|c} (a_i, a_i \cdot s + e_i) \\ \hline s \in R_q \text{ uniform and fixed} \\ e_i \text{ Gaussian} \end{array}$$

Hardness based on worst case (ideal-)lattice problems [LPR'10]

• Secret errors e_i need fresh randomness. Can we make this deterministic?

"Learning with Rounding": LWR [This Work]

 Generate errors deterministically by rounding to a "sparse" subgroup (Fundamental operation used in decryption algorithms)
 Let p < q and define [x]_p = [(p/q) ⋅ x] mod p for x ∈ Z_q

"Learning with Rounding": LWR [This Work]

 Generate errors deterministically by rounding to a "sparse" subgroup (Fundamental operation used in decryption algorithms)
 Let p < q and define |x]_p = |(p/q) ⋅ x] mod p for x ∈ Z_q

Ring-LWR Problem (RLWR $_{q,p}$)

Distinguish pairs $(a_i, \lfloor a_i \cdot s \rceil_p) \in R_q \times R_p$ from uniform

"Learning with Rounding": LWR [This Work]

 Generate errors deterministically by rounding to a "sparse" subgroup (Fundamental operation used in decryption algorithms)
 Let p < q and define |x]_p = |(p/q) ⋅ x] mod p for x ∈ Z_q

Ring-LWR Problem (RLWR $_{q,p}$)

Distinguish pairs $(a_i, \lfloor a_i \cdot s \rceil_p) \in R_q \times R_p$ from uniform

- LWE conceals low-order bits by adding small random noise
- LWR discards low-order bits instead

Security Proof and Application

Theorem

 $\textit{Ring-LWE}_{q,\chi} \leq \textit{RLWR}_{q,p} \textit{ when } q \geq p \cdot n^{\omega(1)} \textit{ and } \chi \textit{ short}$

Security Proof and Application

Theorem

 $\mathit{Ring-LWE}_{q,\chi} \leq \mathit{RLWR}_{q,p}$ when $q \geq p \cdot n^{\omega(1)}$ and χ short

$$\begin{split} (\boldsymbol{U}(R_q), \boldsymbol{U}(R_p)) &\equiv (\boldsymbol{U}(R_q), \lfloor \boldsymbol{U}(R_q) \rceil_p) \\ &\stackrel{c}{\approx} (\boldsymbol{a}, \lfloor \boldsymbol{a} \cdot \boldsymbol{s} + \boldsymbol{e} \rceil_p) \text{ (by the (R)LWE assumption)} \\ &\equiv (\boldsymbol{a}, \lfloor \boldsymbol{a} \cdot \boldsymbol{s} \rceil_p) \text{ (w.h.p., for short error)} \end{split}$$

Theorem

Ring-LWE_{q, χ} \leq RLWR_{q,p} when $q \geq p \cdot n^{\omega(1)}$ and χ short

$$(\boldsymbol{U}(R_q), \boldsymbol{U}(R_p)) \equiv (\boldsymbol{U}(R_q), \lfloor \boldsymbol{U}(R_q) \rceil_p)$$

$$\stackrel{c}{\approx} (\boldsymbol{a}, \lfloor \boldsymbol{a} \cdot \boldsymbol{s} + \boldsymbol{e} \rceil_p) \text{ (by the (R)LWE assumption)}$$

$$\equiv (\boldsymbol{a}, \lfloor \boldsymbol{a} \cdot \boldsymbol{s} \rceil_p) \text{ (w.h.p., for short error)}$$

Synthesizers from LWR

- $S: R_q \times R_q \to R_p$ defined as $S(a, s) = \lfloor a \cdot s \rceil_p$ is a synthesizer [NR'95]
- Gives a k-bit PRF through a $\log k$ depth tree of synthesizers
- Details of the construction in the paper

2 Learning with Rounding

• Synth-PRF is $\log k$ levels of synthesizers (NC²). Can we do better?

• Synth-PRF is $\log k$ levels of synthesizers (NC²). Can we do better?

Direct LWE-Based Construction

• Secret key is uniform $a \leftarrow R_q$ and short $s_1, \ldots, s_k \in R$

• Synth-PRF is $\log k$ levels of synthesizers (NC²). Can we do better?

Direct LWE-Based Construction

- Secret key is uniform $a \leftarrow R_q$ and short $s_1, \ldots, s_k \in R$
- "Rounded subset-product" function:

$$F_{a,s_1,\ldots,s_k}(x_1\cdots x_k) = \left\lfloor a \cdot \prod_{i=1}^k s_i^{x_i} \mod q \right\rceil_p$$

• Synth-PRF is $\log k$ levels of synthesizers (NC²). Can we do better?

Direct LWE-Based Construction

- Secret key is uniform $a \leftarrow R_q$ and short $s_1, \ldots, s_k \in R$
- "Rounded subset-product" function:

$$F_{a,s_1,\ldots,s_k}(x_1\cdots x_k) = \left\lfloor a \cdot \prod_{i=1}^k s_i^{x_i} \mod q \right\rceil_p$$

Can be computed efficiently (in NC¹), via FFT/CRT and reduction to subset-sum

• Synth-PRF is $\log k$ levels of synthesizers (NC²). Can we do better?

Direct LWE-Based Construction

- Secret key is uniform $a \leftarrow R_q$ and short $s_1, \ldots, s_k \in R$
- "Rounded subset-product" function:

$$F_{a,s_1,\ldots,s_k}(x_1\cdots x_k) = \left\lfloor a \cdot \prod_{i=1}^k s_i^{x_i} \mod q \right\rceil_p$$

Can be computed efficiently (in NC¹), via FFT/CRT and reduction to subset-sum

• [NR'97,NRR'00]: direct PRFs from DDH / factoring (in NC¹)

$$F_{g,s_1,\ldots,s_k}(x_1\cdots x_k) = g^{\prod s_i^{x_i}}$$

(Computing this needs a costly exponentiation or lots of preprocessing...)

• Seed is uniform $a \in R_q$ and short $s_1, \ldots, s_k \in R$

$$F_{a,s_1,\ldots,s_k}(x_1\cdots x_k) = \left\lfloor a \cdot s_1^{x_1} \cdots s_k^{x_k} \mod q \right\rceil_p$$

• Seed is uniform $a \in R_q$ and short $s_1, \ldots, s_k \in R$

$$F_{a,s_1,\ldots,s_k}(x_1\cdots x_k) = \left\lfloor a \cdot s_1^{x_1} \cdots s_k^{x_k} \mod q \right\rceil_p$$

• Like the LWE \leq LWR proof, but "souped up" to handle queries

• Seed is uniform $a \in R_q$ and short $s_1, \ldots, s_k \in R$

$$F_{a,s_1,\ldots,s_k}(x_1\cdots x_k) = \left\lfloor a \cdot s_1^{x_1} \cdots s_k^{x_k} \mod q \right\rceil_p$$

 Like the LWE ≤ LWR proof, but "souped up" to handle queries Thought experiment: answer queries with

$$\tilde{F}(x) := \left\lfloor (a \cdot s_1^{x_1} + x_1 \cdot e_{x_1}) \cdot s_2^{x_2} \cdots s_k^{x_k} \right\rceil_p$$
$$= \left\lfloor a \prod_{i=1}^k s_i^{x_i} + x_1 \cdot e_{x_1} \cdot \prod_{i=2}^k s_i^{x_i} \right\rceil_p$$

W.h.p., $\tilde{F}(x) = F(x)$ due to "small" error and rounding

• Seed is uniform $a \in R_q$ and short $s_1, \ldots, s_k \in R$

$$F_{a,s_1,\ldots,s_k}(x_1\cdots x_k) = \left\lfloor a \cdot s_1^{x_1} \cdots s_k^{x_k} \mod q \right\rceil_p$$

 Like the LWE ≤ LWR proof, but "souped up" to handle queries Thought experiment: answer queries with

$$\tilde{F}(x) := \left\lfloor (a \cdot s_1^{x_1} + x_1 \cdot e_{x_1}) \cdot s_2^{x_2} \cdots s_k^{x_k} \right\rceil_p$$
$$= \left\lfloor a \prod_{i=1}^k s_i^{x_i} + x_1 \cdot e_{x_1} \cdot \prod_{i=2}^k s_i^{x_i} \right\rceil_p$$

W.h.p., $\tilde{F}(x) = F(x)$ due to "small" error and rounding • Replace $(a, a \cdot s_1 + e_{x_1})$ with (a_0, a_1) [ring-LWE] \Rightarrow New function $F'(x) = \lfloor a_{x_1} \cdot s_2^{x_2} \cdots s_k^{x_k} \rfloor_p$

• Seed is uniform $a \in R_q$ and short $s_1, \ldots, s_k \in R$

$$F_{a,s_1,\ldots,s_k}(x_1\cdots x_k) = \left\lfloor a \cdot s_1^{x_1} \cdots s_k^{x_k} \mod q \right\rceil_p$$

• Like the LWE \leq LWR proof, but "souped up" to handle queries Thought experiment: answer queries with

$$\tilde{F}(x) := \left\lfloor (a \cdot s_1^{x_1} + x_1 \cdot e_{x_1}) \cdot s_2^{x_2} \cdots s_k^{x_k} \right\rceil_p$$
$$= \left\lfloor a \prod_{i=1}^k s_i^{x_i} + x_1 \cdot e_{x_1} \cdot \prod_{i=2}^k s_i^{x_i} \right\rceil_p$$

W.h.p., $\tilde{F}(x) = F(x)$ due to "small" error and rounding • Replace $(a, a \cdot s_1 + e_{x_1})$ with (a_0, a_1) [ring-LWE] \Rightarrow New function $F'(x) = \lfloor a_{x_1} \cdot s_2^{x_2} \cdots s_k^{x_k} \rceil_p$

• Repeat inductively for s_2, s_3, \ldots until we get the Uniform func

Conclusions

Summary

- **O** Derandomizing LWE: Generate errors deterministically
- In the second second
- [Zha'12]: these constructions also yield quantum PRFs

Conclusions

Summary

- Oerandomizing LWE: Generate errors deterministically
- efficient lattice-based PRFs from synthesizers and directly
- [Zha'12]: these constructions also yield quantum PRFs

Open Questions

() Get different proofs with better p/q ratios:

	LWR	Synth-PRF	Direct-PRF
Ratio (Current)	$n^{\omega(1)}$	$n^{\Theta(\log k)}$	$n^{\Theta(k)}$
Ratio (Hope)	\sqrt{n}	$\operatorname{poly}(n)$	$\operatorname{poly}(n)$

2 Efficient PRF from parity with noise (LPN) or subset sum?

```
int getRandomNumber()
{
return 4; // chosen by fair dice roll.
// guaranteed to be random.
}
```

(Image source: http://xkcd.com/221/)

EUROCRYPT '12 12 / 12