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Pseudorandom Functions [GGM’84]

A family of functions F = {Fs : {0, 1}k → B} such that, given
adaptive query access,

Fs ← F Random Uc
≈

6 ? 6 ?
xi Fs(xi) xi U(xi)

??

Lots of applications in symmetric key cryptography: encryption,
message authentication, friend or foe identification...
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Cooking a PRF

1 “Man-made”: AES, Blowfish...

Fast and secure against known cryptanalytic techniques

Want provable security based on a natural hard problem

2 Goldreich-Goldwasser-Micali [GGM’84]

Based on any (doubling) PRG. Fs(x1, . . . , xk) = Gxk
(. . . (Gx1(s)) . . .)

Sequential: at least k iterations

3 Direct constructions [NR’95, NR’97, NRR’00]

Parallel and theoretically efficient

Security based on number-theory (DDH, factoring...)

Not practically efficient (huge exponentiations), lots of preprocessing

What about a “post-quantum” world?
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Lattices

A periodic grid in the n-dimensional
Euclidean space

Advantages of Lattice Crypto Schemes

Simple & efficient: linear, highly parallel operations

Resist quantum attacks (so far)

Secure under worst-case hardness assumptions [Ajt’96,. . . ]

Lattice-based Pseudorandomness?

Only known PRF is generic GGM, no direct constructions

Security proofs based on hard lattice problems need fresh biased errors
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Our Results

? Low-depth, highly efficient PRFs from (ring-)LWE

? Synthesizer-based PRF in TC1 ⊆ NC2 a la [NR’95]

? Direct construction in TC0 ⊆ NC1 analogous to [NR’97,NRR’00]

? Main technique - “derandomizing” LWE: deterministic errors

Gives more practical PRGs to feed in GGM

Full version: http://eprint.iacr.org/2011/401
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(Ring-) Learning with Errors: (R)LWE [Reg’05,Pei’09,LPR’10]

For n a power of 2 (say), define “cyclotomic” polynomial rings

R := Z[x]/(xn + 1) and Rq := R/qR = Zq[x]/(xn + 1)

(R)LWE Problem:

(ai, ai · s+ ei) (ai, bi) ∈ Rq ×Rqc
≈

s ∈ Rq uniform and fixed

ei Gaussian

Hardness based on worst case (ideal-)lattice problems [LPR’10]

Secret errors ei need fresh randomness. Can we make this
deterministic?
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“Learning with Rounding”: LWR [This Work]

Generate errors deterministically by rounding to a “sparse” subgroup

(Fundamental operation used in decryption algorithms)

Let p < q and define bxep = b(p/q) · xe mod p for x ∈ Zq

. . . . . .︸ ︷︷ ︸
−2

︸ ︷︷ ︸
−1

︸ ︷︷ ︸
0

︸ ︷︷ ︸
1

︸ ︷︷ ︸
2

−2q/p −q/p 0 q/p 2q/p

Ring-LWR Problem (RLWRq,p)

Distinguish pairs (ai, bai · sep) ∈ Rq ×Rp from uniform

LWE conceals low-order bits by adding small random noise

LWR discards low-order bits instead
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Security Proof and Application

Theorem

Ring-LWEq,χ ≤ RLWRq,p when q ≥ p · nω(1) and χ short

(U(Rq), U(Rp)) ≡ (U(Rq), bU(Rq)ep)
c
≈ (a, ba · s+ eep) (by the (R)LWE assumption)

≡ (a, ba · sep) (w.h.p., for short error)

Synthesizers from LWR

S : Rq ×Rq → Rp defined as S(a, s) = ba · sep is a synthesizer [NR’95]

Gives a k-bit PRF through a log k depth tree of synthesizers

Details of the construction in the paper
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Direct Construction: Shallower? More Efficient?

Synth-PRF is log k levels of synthesizers (NC2). Can we do better?

Direct LWE-Based Construction

Secret key is uniform a← Rq and short s1, . . . , sk ∈ R

“Rounded subset-product” function:

Fa,s1,...,sk(x1 · · ·xk) =

⌊
a ·

k∏
i=1

sxii mod q

⌉
p

Can be computed efficiently (in NC1), via FFT/CRT and reduction to
subset-sum

[NR’97,NRR’00]: direct PRFs from DDH / factoring (in NC1)

Fg,s1,...,sk(x1 · · ·xk) = g
∏
s
xi
i

(Computing this needs a costly exponentiation or lots of preprocessing. . . )

Abhishek Banerjee (Georgia Tech) Pseudorandom Functions and Lattices EUROCRYPT ’12 9 / 12
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Proof Outline

Seed is uniform a ∈ Rq and short s1, . . . , sk ∈ R

Fa,s1,...,sk(x1 · · ·xk) =
⌊
a · sx11 · · · s

xk
k mod q

⌉
p

Like the LWE ≤ LWR proof, but “souped up” to handle queries

Thought experiment: answer queries with

F̃ (x) :=
⌊
(a · sx11 + x1 · ex1) · s

x2
2 · · · s

xk
k

⌉
p

=

⌊
a

k∏
i=1

sxii + x1 · ex1 ·
k∏
i=2

sxii

⌉
p

W.h.p., F̃ (x) = F (x) due to “small” error and rounding

Replace (a, a · s1 + ex1) with (a0, a1) [ring-LWE]
⇒ New function F ′(x) = bax1 · s

x2
2 · · · s

xk
k ep

Repeat inductively for s2, s3, . . . until we get the Uniform func
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Conclusions

Summary

1 Derandomizing LWE: Generate errors deterministically

2 Efficient lattice-based PRFs from synthesizers and directly

3 [Zha’12]: these constructions also yield quantum PRFs

Open Questions

1 Get different proofs with better p/q ratios:

LWR Synth-PRF Direct-PRF

Ratio (Current) nω(1) nΘ(log k) nΘ(k)

Ratio (Hope)
√
n poly(n) poly(n)

2 Efficient PRF from parity with noise (LPN) or subset sum?
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The Last Word [Mun’07]
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(Image source: http://xkcd.com/221/)
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