Key-Alternating Ciphers in a Provable Setting: Encryption Using a Small Number of Public Permutations

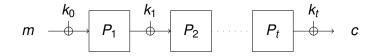
Andrey Bogdanov , Lars R. Knudsen Gregor Leander , Francois-Xavier Standaert John Steinberger , Elmar Tischhauser

Outline

- 2 The Result
- 3 A Proof Outline
- What Does it Say?
- 5 Further Results and Future Work

Outline

- 2 The Result
- 3 A Proof Outline
- What Does it Say?
- 5 Further Results and Future Work


<ロ> <回> <回> <回> < 回> < 回>

3/30

The Cipher

The Topic

A key-alternating cipher

Example

Most prominent example: AES

Many others exist.

Further Results and Future Work

A natural question

Question

Is this a good way of building block ciphers?

A natural question

Question

Is this a good way of building block ciphers?

More precisely:

Question

Is there a generic way to break all of them?

Further Results and Future Work

・ロト ・回ト ・ヨト ・ヨト

4/30

A natural question

Question

Is this a good way of building block ciphers?

More precisely:

Question

Is there a generic way to break all of them?

Answer

We do not know!

Only one round studied: Even-Mansour '91

Further Results and Future Work

<ロ> <回> <回> <回> < 回> < 回>

5/30

A natural question

Answer

We do not know!

Very surprising!

- cf. progress in provable security
- cf. generic group model
- cf. SHA-3 competition

SHA-3

Folklore

We are much more confident with designing block ciphers than with designing hash functions.

Example

DES is still okay, MD4/MD5 and SHA-1: not really

SHA-3

Folklore

We are much more confident with designing block ciphers than with designing hash functions.

Example

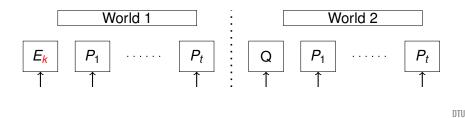
DES is still okay, MD4/MD5 and SHA-1: not really

When it comes to provable security: This is different.

Provable Security

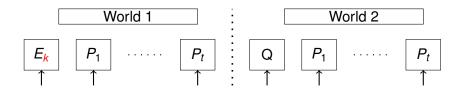
All SHA-3 finalist come with a proof in the idealized model. No AES finalist had one.

・ロト ・回ト ・ヨト ・ヨト


- 2 The Result
- 3 A Proof Outline
- What Does it Say?
- 5 Further Results and Future Work

The Setting

The Setting


- Ideal round functions
- Information theoretical adversary
- Two worlds

=

Further Results and Future Work

The Result

Theorem (informal)

No adversary can distinguish the two worlds with less than

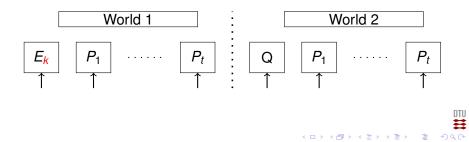
- 2^{n/2} queries for one round (Even-Mansour)
- 2^{2n/3} queries for more than one round
- 2^{3n/4} queries for more than two rounds

• • • • • • • • • • • • •

E 5

Outline

- 2 The Result
- 3 A Proof Outline
- What Does it Say?
- 5 Further Results and Future Work



11/30

A Proof Outline

Initial Game

- Sample permutations *P_i* and *Q* uniform at random
- Choose random keys
- Goal of the adversary A: distinguish the worlds

12/30

Start with empty lists for P_i and E.

Upon a query to P_i (or E):

- Select all *P_i* uniform at random (among all permutations consistent with previous queries).
- Construct E.
- Answer the query accordingly.
- Update lists.

Goal of the adversary A: distinguish the worlds

Clear: Results in the same distribution.

State Of The Art	The Result	A Proof Outline	What Does it Say?	Further Results and Future Work
The Hybrid				
We change the same a bit I are compliant. Start with empty				

We change the game *a bit*. Lazy sampling: Start with empty lists for P_i and E.

13/30

The Hybrid

We change the game *a bit*. Lazy sampling: Start with empty lists for P_i and E.

Modified Game: Upon a query to P_i (or E):

- Select a random answer *y* (maintaining *P_i* (or *E*) as a permutation)
- Check consistency
- If consistent: Output y and update lists.
- If inconsistent: crash!

Goal of the adversary A: distinguish the worlds

3/30

The Hybrid

We change the game *a bit*. Lazy sampling: Start with empty lists for P_i and E.

Modified Game: Upon a query to P_i (or E):

- Select a random answer *y* (maintaining *P_i* (or *E*) as a permutation)
- Check consistency
- If consistent: Output y and update lists.
- If inconsistent: crash!

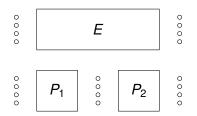
Goal of the adversary A: distinguish the worlds

Consistency

 P_i and E_k are consistent iff

 $E_k(x) = P_t(\ldots P_2(P_1(x \oplus k_0) \oplus k_1) \ldots) \oplus k_t$

#


14/30

э

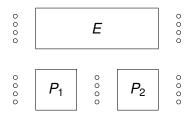
The Hybrid: In a Picture

For Simplicity

Only n = 2 and zero keys.

#

14/30


э

<ロ> (日) (日) (日) (日) (日)

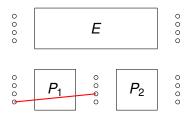
The Hybrid: In a Picture

For Simplicity

Only n = 2 and zero keys.

$$P_1(0) =$$

#


14/30

э

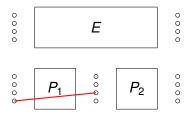
The Hybrid: In a Picture

For Simplicity

Only n = 2 and zero keys.

$$P_1(0) = 1$$

#


14/30

э

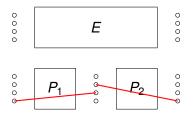
The Hybrid: In a Picture

For Simplicity

Only n = 2 and zero keys.

$$P_1(0) = 1 P_2(2) =$$

#


14/30

< ロ > < 回 > < 回 > < 回 > < 回 >

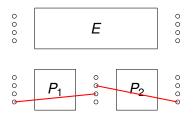
The Hybrid: In a Picture

For Simplicity

Only n = 2 and zero keys.

$$P_1(0) = 1$$
 $P_2(2) = 0$

#


14/30

< ロ > < 回 > < 回 > < 回 > < 回 >

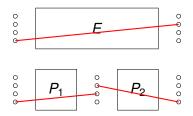
The Hybrid: In a Picture

For Simplicity

Only n = 2 and zero keys.

$$P_1(0) = 1$$
 $P_2(2) = 0$ $E(0) =$

#

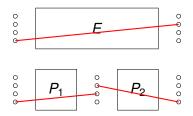

14/30

< ロ > < 回 > < 回 > < 回 > < 回 >

The Hybrid: In a Picture

For Simplicity

Only n = 2 and zero keys.



$$P_1(0) = 1$$
 $P_2(2) = 0$ $E(0) = 2$

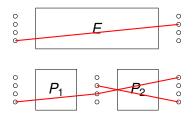
The Hybrid: In a Picture

For Simplicity

Only n = 2 and zero keys.

List of queries:

 $P_1(0) = 1$ $P_2(2) = 0$ E(0) = 2 $P_2(1) =$



э

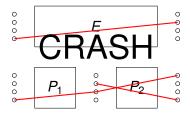
The Hybrid: In a Picture

For Simplicity

Only n = 2 and zero keys.

List of queries:

 $P_1(0) = 1$ $P_2(2) = 0$ E(0) = 2 $P_2(1) = 3$


э

Further Results and Future Work

The Hybrid: In a Picture

For Simplicity

Only n = 2 and zero keys.

List of queries:

 $P_1(0) = 1$ $P_2(2) = 0$ E(0) = 2 $P_2(1) = 3$

イロン イヨン イヨン イヨン

Almost Done?

Two Steps To Go

- Show that one cannot win in the modified game.
- Show that the modified game is only *slightly* different.

Almost Done?

Two Steps To Go

- Show that one cannot win in the modified game.
- Show that the modified game is only *slightly* different.

Step 1: Easy

Sketch on the next slides.

・ロト ・回ト ・ヨト ・ヨト

15/30

Almost Done?

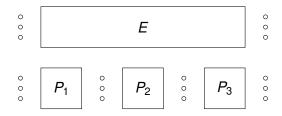
Two Steps To Go

- Show that one cannot win in the modified game.
- Show that the modified game is only *slightly* different.

Step 1: Easy

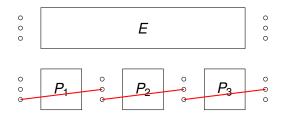
Sketch on the next slides.

Step 2: Not so easy

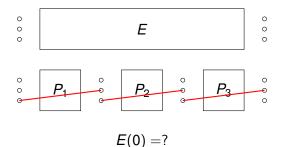

Quite involved and technical: See paper.

State Of The Art

What Does it Say'

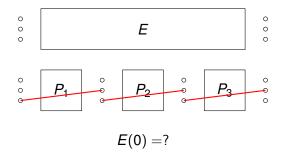

Further Results and Future Work

On Step 2: The Modified Game is different


On Step 2: The Modified Game is different

Further Results and Future Work

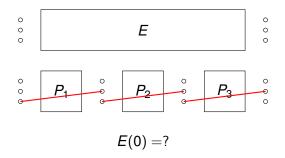
On Step 2: The Modified Game is different


Further Results and Future Work

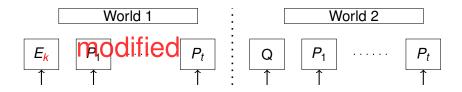
=

16/30

<ロ> (四) (四) (日) (日) (日)


On Step 2: The Modified Game is different

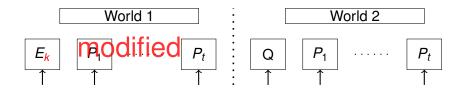
 Modified Game: Pr(E(0) = 0) = Pr(E(0) = 1) = Pr(E(0) = 2) = 1/3


16/30

On Step 2: The Modified Game is different

• Modified Game: Pr(E(0) = 0) = Pr(E(0) = 1) = Pr(E(0) = 2) = 1/3

Original Game: 8 possibilities



First observation

As long as the oracle does not crash, both worlds are the same.

<ロ> <回> <回> <回> < 回> < 回>

17/30

First observation

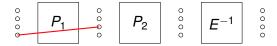
As long as the oracle does not crash, both worlds are the same.

・ロト ・ 同ト ・ モト ・ モト

17/30

Further Results and Future Work

Step 1, continued


Question

Further Results and Future Work

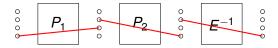
Step 1, continued

Question

Further Results and Future Work

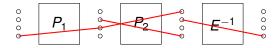
Step 1, continued

Question



Further Results and Future Work

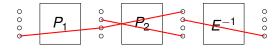
Step 1, continued


Question

Further Results and Future Work

Step 1, continued

Question



Step 1, continued

Question

What is the probability for a crash?

A Crash

A sequence of queries, connected in all but one positions.

Step 1, continued

A Crash

A sequence of queries, connected in all but one positions.

Step 1, continued

A Crash

A sequence of queries, connected in all but one positions.

Number of sequences:

 $\leq q^{t+1}$

・ロン ・四 と ・ ヨ と ・ ヨ と

19/30

Step 1, continued

A Crash

A sequence of queries, connected in all but one positions.

Number of sequences:

$$\leq q^{t+1}$$

Prob for a sequences to be connected in all but one positions:

$$\leq (t + 1)2^{-tn}$$

Step 1, continued

A Crash

A sequence of queries, connected in all but one positions.

Number of sequences:

$$\leq q^{t+1}$$

Prob for a sequences to be connected in all but one positions:

$$\le (t + 1)2^{-tn}$$

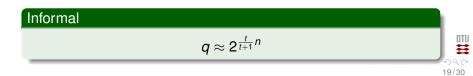
Thus

$$\mathsf{Pr}(\mathsf{crash}) \leq \frac{(t+1)q^{t+1}}{2^{tn}}$$

Step 1, continued

A Crash

A sequence of queries, connected in all but one positions.


Number of sequences:

 $\leq q^{t+1}$

$$\leq (t+1)2^{-tn}$$

Thus

$$\mathsf{Pr}(\mathsf{crash}) \leq \frac{(t+1)q^{t+1}}{2^{tn}}$$

The precise statement

Notation:

- *n* block size
- q number of queries

Theorem

Let $N = 2^n$ and let $q = N^{\frac{t}{t+1}}/Z$ for some $Z \ge 1$. Then, for any $t \ge 1$, and assuming q < N/100, we have

$$\operatorname{\textit{Adv}}_{E,N,t}^{\operatorname{PRP}}(q) \leq rac{4.3q^3t}{N^2} + rac{t+1}{Z^t}.$$

For $t \ge 2$ this implies $q \approx 2^{2n/3}$.

Outline

- State Of The Art
- 2 The Result
- 3 A Proof Outline
- What Does it Say?
- 5 Further Results and Future Work

Interpreting The Result

Theorem (informal)

With idealized permutations as round function, the key-alternating cipher is secure.

What does this mean? For a concrete cipher?

ヘロト ヘヨト ヘヨト ヘヨト

22/30

Interpreting The Result

Theorem (informal)

With idealized permutations as round function, the key-alternating cipher is secure.

What does this mean? For a concrete cipher?

Generic Attacks

If you want to break the cipher, you have to use special properties of the permutations.

Interpreting The Result

Theorem (informal)

With idealized permutations as round function, the key-alternating cipher is secure.

What does this mean? For a concrete cipher?

Generic Attacks

If you want to break the cipher, you have to use special properties of the permutations.

For a Concrete Instance

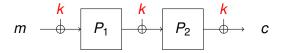
It does not mean anything.

Any practical instance is, well practical. Thus not ideal.

Outline

- State Of The Art
- 2 The Result
- 3 A Proof Outline
- What Does it Say?
- 5 Further Results and Future Work

More in the paper:


- Study the expected resistance against linear cryptanalysis
- A concrete proposal using AES

A Concrete Proposal or How It Started

A Proposal

A block cipher secure against related-key attacks?

 $(P_{1,2} \text{ is AES with fixed key.})$

Intuition

If P_1 and P_2 are complicated enough than related-key attacks do not work.

DTU ₩ •? 25/30

Future Work

This work leaves many questions open:

- Improve the bound
- Get closer to actual constructions, e.g.
 - identical round keys
 - identical round functions
- New Constructions

Further Results and Future Work

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・

27/30

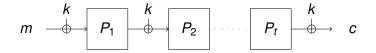
Future Work: Improve The Bound

Conjecture

The actual lower bound is

 $q \approx 2^{t/(t+1)n}$

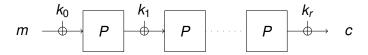
- This is actually the upper bound.
- Already improved to $2^{3/4n}$ for $t \ge 3$
- Challenging step: A bound that improves with t.


Thanks!

Further Results and Future Work

Future Work: Closer to actual constructions I

Identical round keys:



Further Results and Future Work

Future Work: Closer to actual constructions II

Identical round functions:

