
Improving the Complexity of Index Calculus Algorithms
in Elliptic Curves over Binary Fields

Jean-Charles Faugère1 Ludovic Perret1 Christophe Petit2
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Motivation

General Motivation

Algebraic Cryptanalysis

Identifying structures which help the solving step (computer algebra)

Elliptic Curve Discrete Logarithm (ECDLP)

Polynomial System Solving (PoSSo)
with structures

Index Calculus (Semaev/Gaudry/Diem)
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Context: Solving the DLP

Discrete logarithm problem (DLP)

Given a finite cyclic group G = 〈g〉 and h ∈ G, find an integer k such that

h = [k]g = g + . . .+ g

k times

Generic algorithms O
(√

#G
)

I Baby Step Giant Step, Pollard’s rho, etc.
I For any G, black box group

index calculus can be sub-exponential
I sieving + linear algebra
I G = (F×

q ,×), G = (JC(Fq),+) with genus g > 2

+ G = E(Fq) no sub-exponential index calculus algorithm in general
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Context: Index Calculus

Algorithm

Input : P,Q ∈ G
Output : k such that Q = [k]P

Factor basis: F = {π1, . . . , πs}, s = #F
Sieving: decompose (if possible) R = [aj ]P + [bj ]Q over F for many
random (aj , bj)

Linear Algebra: when at least s+ 1 relations are sieved, reduce them
in order to find a (non trivial) relation between P and Q∑

j

([λj · aj ]P + [λj · bj ]Q) = 0

Complexity

Balance between the sieving and linear algebra costs in function of s

The existence of an efficient algorithm for decomposing over F
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Context: Diem’s Variant of Index Calculus

+ Semaev 04: introduce Summation Polynomials for decomposing points
+ Gaudry 05: factor basis with a decomposition algo. (/PoSSo)
+ Diem 05,11: generalization of Gaudry’s approach

Algorithm (Diem’s variant)

Input : P,Q ∈ E(Fqn), V a Fq-vector space (dim = n′)
Output : x such that Q = [x]P

1. Factor basis: F = {(x, y) ∈ E(Fqn) | x ∈ V }
2. Sieving: [aj ]P + [bj ]Q = P1 + · · ·+ Pm, Pi ∈ F , m ≈ n/n′

3. Linear algebra
∑
j

[λj · aj ]P ⊕ [λj · bj ]Q = 0E(Fqn )

Complexity

SUBEXP in some cases (Diem 2011)

When q = 2 the complexity is exp(O(n log(n)1/2))
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Point Decomposition Problem (PDP)

PDP(R)

Let be given

R ∈ E
F a factor basis of points in E

Find

P1, . . . , Pm ∈ F such that R= P1 + . . .+ Pm

+ Modeling the problem as a polynomial system {g1, . . . ,gs} and solve
this system. 

(x1, y1) ∈ E, . . . (xm, ym) ∈ E
(x1, y1)⊕ (x2, y2) = (r1, t1)
(r1, t1)⊕ (x3, y3) = (r2, t2)

...
(rn−2, tn−2)⊕ (xn, yn) = (Rx, Ry)
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Recent Related Works

Elliptic curve discrete logarithm problem over small degree
extension fields. Joux, Vitse (To appear in Journ. of Crypto.)

+Instantiation approach in PDP step

Using Symmetries in the Index Calculus for Elliptic Curves
Discrete Logarithm. Faugère, Gaudry, Huot, R. (ePrint 2012/199)

+Specific structures identified + used ⇒ save an exp. factor

Rely on Gaudry’s variant
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Our Contribution

What about Diem’s variant
in the extremal case of an ECDLP over F2p with p prime?

Identify specific structures in this case

Provide an ad-hoc algorithm

Investigate complexity
↪→ Obtain a better one (heuristic)
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Outline

1 Main Result

2 Experimental results and Conclusion
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Algebraic modelling of PDP: Summation polynomials

Semaev, Technical report 2004

+Projection of the PDP(R=0) on the {x1, . . . , xm}

PDP: 〈g1(x1, . . . , xm, y1, . . . , ym), . . . ,gs(x1, . . . , xm, y1, . . . , ym)〉

Summation: 〈fm(x1, . . . , xm)〉 = 〈g1, . . . ,gs〉 ∩ Fqn [x1, . . . , xm]

degxi
(fm) = 2m−2

Elimination (Resultant, Gröbner basis)

Characterization

fm(x1, ..., xm) = 0
m

∃(P1, ..., Pm) ∈ E(K)m s.t. ∀i, (Pi)x = xi and P1 + · · ·+ Pm = 0
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+Projection of the PDP(R=0) on the {x1, . . . , xm}

PDP: 〈g1(x1, . . . , xm, y1, . . . , ym), . . . ,gs(x1, . . . , xm, y1, . . . , ym)〉

Summation: 〈fm(x1, . . . , xm)〉 = 〈g1, . . . ,gs〉 ∩ Fqn [x1, . . . , xm]

degxi
(fm) = 2m−2

Elimination (Resultant, Gröbner basis)

Application in Index Calculus

Solving PDP(R) with factor basis F = {(x, y) ∈ E(Fqn) | x ∈ V }.
m

Finding (x1, . . . , xm) ∈ V m s.t. fm+1(x1, ..., xm, Rx) = 0
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Solving equations with vectorial constraint

General problem

Let f(x1, . . . , xm) ∈ F2n [x1, . . . , xm] and V = 〈ν1, . . . , νn′〉 ⊂ F2n an
n′-dim F2-vect with mn′ ≈ n. Find the solutions of f in V m.

+Weill restriction of scalars in two steps!

1 Change variables: xi = ν1ti,1 + . . .+ νn′ti,n′ .

fV (t1,1, . . . , tm,n′) = 0 with fV ∈ F2n [t1,1, . . . , tm,n′ ]/〈t2i,j − ti,j〉
2 Usual scalar restriction: {ω1, . . . , ωn} be a F2-basis of F2n

fV = ϕ1(fV )ω1 + · · ·+ ϕn(fV )ωn, ϕi(fV ) ∈ F2[ti,j ]/〈t2i,j − ti,j〉

General problem equivalent to solve

ϕ1(fV ) = · · · = ϕn(fV ) = 0 over F2
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Solving equations with vectorial constraint by linearization

Polynomial system model

Rational solutions of Salg : {ϕ1(fV ), . . . , ϕn(fV )} ⊂ F2[t1,1, . . . , tm,n′ ]

+Naive method: linearization

We consider many mf with m =
∏m

i=1 x
ei
i

We add ϕ1((mf)V ), . . . , ϕn((mf)V ) in Salg
We construct a linear system Slin from Salg (Macaulay matrix)

. . . cim . . . cjm . . .

 
monomials in Salg

.

.

.

· · ·+ cimti + cjmtj + · · · = ϕk(mf)

Is there any linear dependencies between the mif ’s ?
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Linear Dependencies

+Frobenius transform is linear

ϕi(g
2
V ) =

∑
j αjϕi(gV )

↪→ avoid m such that m = LT (m′f) for a preceding m′.

�

{x211 , x2
2

1 , . . . , x
2n

′+1

1 } ⊂ vect. space of dim. n′

↪→ consider monomials m =
∏m

i=1 x
ei
i with ei ≤ 2n

′

Assumption

If we choose the monomials outside the set we identified here all the
algebraic equations in Salg are linearly independant.

Under this assumption, it is now possible to evaluate the number
of columns/rows of the smallest square Macaulay matrix.
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Intrinsic Structures

g = mf , g( x1 , . . . , xj , . . .)

ϕi(gV )( t1,1, . . . , t1,n′ , . . . , tj,1, . . . , tj,n′ , . . .) mod 〈t2i,j + ti,j〉

Block Affine Multilinear

Let k = Maxi(log2(degxi
(f))) and m =

∏r
i=1 x

ei
i

+Due to field equations, ϕi(mf) are affine multilinear
+Deg of ϕi(mf) w.r.t Xi = {ti,1, . . . , ti,n′} is ≤ max0≤e′i≤2k HW(ei + e′i)
↪→ MonLinB(d) = { multilinears monomials of degree ≤ d in each Xi}
↪→ control the number E(d) of monomials

affine multinear: t1t2t4t5 + t1t7 + 1
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cim . . . c
j
m

 n · E(d)

. .
M(d) = #MonLinB(d)



Macaulay
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Complexity results

Solving equations with linear constraints

M(d) =
(∑d

d′=0

(
n′

d′

))m
and E(d) = 2tm

(∑d
d′=t

(
n′−t
d′−t
))m

, thus

n · E(d) ≥M(d) as soon as d ≈ n′

2

assumption of linear independency ⇒ O(2ω n/2)

+In the application to ECDLP here, the sieving step is dominant

Solving the ECDLP over F2n with index calculus

Under assumption of linear independency the complexity is bounded by

O(2ω n/2)
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Outline

1 Main Result

2 Experimental results and Conclusion
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Experiments: Validating the assumption

Fact

A random Boolean matrix of size
(M + 5)×M has rank
M or M − 1 or M − 2 with proba
≈ 99.9%.

Results (binary fields < 240)

For random polynomials f with
degree < 2m−1 in each of its
m < 5 variables.

Semaev’s summation polynomials
(evaluate) m = 2, . . . , 4.

The test was repeated 100 times for
each examples. The proba. is always
≈ 100%.

;

cim · · · c
j
m

;




n · E(d)

. .
M(d)

(M(d) + 5)×M(d)
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Conclusion

+Structures are identified!
↪→ Ad-hoc linearization algorithm
↪→ Better complexity result!

+Linearization: first step in a PoSSo study
↪→ Preleminary experiments with Gröbner show better performances.

n m Number of Theoretical
Operations (GB) bound

41 2 223.5 M(d)2 ≈ 260

67 2 237.1 M(d)2 ≈ 290

97 2 251.1 M(d)2 ≈ 2125

131 2 274.5 M(d)2 ≈ 2160
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Conclusion

+Structures are identified!
↪→ Ad-hoc linearization algorithm
↪→ Better complexity result!

+Linearization: first step in a PoSSo study
↪→ Preleminary experiments with Gröbner show better performances.

We obtain a better complexity result but still worst than
exhaustive search...

Nonetheless, we give some indication that these polynomial
systems are easier than one might expect at first!
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Conclusion

+Structures are identified!
↪→ Ad-hoc linearization algorithm
↪→ Better complexity result!

+Linearization: first step in a PoSSo study
↪→ Preleminary experiments with Gröbner show better performances.

�

Semaev summation polynomials are very particular!
↪→ Can not apply usual theoretical/heuristical results in a generic way
↪→ Pitfall of linear dependency!

↪→ Too small experiments for interpolating a better complexity!
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Conclusion, future works

�

Semaev summation polynomials are very particular!
↪→ Can not apply usual theoretical/heuristical results in a generic way
↪→ Pitfall of linear dependency!

↪→ Too small experiments for interpolling a better complexity!

+Semaev summation polynomials contain many more structures!
Using these structures is the only way to progress

↪→ To handle larger examples (at least m = 5, 6)
↪→ To provide theoretical results about degree of regularity
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