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Permutations
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Sufficient Key Length Is Essential
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3. if y = y (k), verify k
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gen
er

ic

atta
ck

!



Sufficient Key Length Is Essential

P0/1 E K0/1

• Key K recoverable in about 2κ evaluations of E

Given O ∈ {P,EK}:
1. y ← O(0n)

2. ∀k ∈ {0, 1}κ : y (k) ← Ek(0n)

3. if y = y (k), verify k

• Upper-bounds PRP security!
• problem for e.g. DES

gen
er

ic

atta
ck

!



Sufficient Key Length Is Essential

P0/1 E K0/1

• Key K recoverable in about 2κ evaluations of E

Given O ∈ {P,EK}:
1. y ← O(0n)

2. ∀k ∈ {0, 1}κ : y (k) ← Ek(0n)

3. if y = y (k), verify k

• Upper-bounds PRP security!
• problem for e.g. DES

gen
er

ic

atta
ck

!



Sufficient Key Length Is Essential

P0/1 E K0/1

• Key K recoverable in about 2κ evaluations of E

Given O ∈ {P,EK}:
1. y ← O(0n)

2. ∀k ∈ {0, 1}κ : y (k) ← Ek(0n)

3. if y = y (k), verify k

• Upper-bounds PRP security!
• problem for e.g. DES

gen
er

ic

atta
ck

!



Sufficient Key Length Is Essential

P0/1 E K0/1

• Key K recoverable in about 2κ evaluations of E

Given O ∈ {P,EK}:
1. y ← O(0n)

2. ∀k ∈ {0, 1}κ : y (k) ← Ek(0n)

3. if y = y (k), verify k

• Upper-bounds PRP security!
• problem for e.g. DES

gen
er

ic

atta
ck

!



Sufficient Key Length Is Essential

P0/1 E K0/1

• Key K recoverable in about 2κ evaluations of E

Given O ∈ {P,EK}:
1. y ← O(0n)

2. ∀k ∈ {0, 1}κ : y (k) ← Ek(0n)

3. if y = y (k), verify k

• Upper-bounds PRP security!
• problem for e.g. DES

gen
er

ic

atta
ck

!



This Paper: Key-Length Extension

Ek(x)

x

E k

k′

x

y

E′
k′(y)

• Goal: construction

E ′[E ] : {0, 1}κ′ × {0, 1}n → {0, 1}n

which is again a

block cipher

such that

• κ′ > κ
• best generic attack requires > 2κ evaluations
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Generic Security: Ideal Block Cipher Model

• ∀k: independent uniformly random permutation
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Approach I: Cascading
0n

Ek`
(· · ·Ek1
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• Re-encrypt with independent keys

• Double Encryption
• Meet-in-the-middle attack

(2κ evaluations of E and E−1)

• Triple Encryption
• Secure up to 2κ+min{n/2,κ/2} queries in ICM

(Bellare and Rogaway, EC’06)
• 3DES can be attacked in 290 queries

(Lucks, FSE’98)

• Longer Cascades
• Security improves for κ < n in ICM

(Gaži and Maurer, AC’09)
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What can be achieved with at most 2 queries to E?
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One Query Is Not Enough

Any one-query construction can achieve at most
2max{κ,n} security!
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• Assuming ∀k ′ : y 6= y ′ ⇒ x 6= x ′

Given O ∈ {E ′K ′ [E ](·),P(·)}:

1. 2(n+κ)/2 random distinct queries (xj , kj) to E

2. 2(n+κ)/2 distinct queries yi to O
3. ∀k ′: zi ← E ′k′ [E ](yi ) if E -value available

check zi
?
= O(yi )

• if O = E ′K ′ : succeeds for k ′ = K ′

• if O = P: fails

• Non-injective queries do no better
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A natural class of 2-query constructions can
achieve at most 2κ+n/2 security.

• Constructions with “injective queries”:
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∀k ′ : t 6= t ′ ⇒ u 6= u′

There is room for security

increase, we achieve it!
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The Double XOR-Cascade
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Definition

2XORk,z [E ](x) := E
k̃

(Ek(x ⊕ z)⊕ z)

• Same key z in both whitening steps

• k̃ derived from k e.g. by a bit-flip
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Main Result
Double XOR-Cascade is secure up to 2κ+n/2 queries.
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A Glimpse at the Proof (2)

The New Problem: Distinguishing Permutations

P10/1 P2

Independent

• P1, P2 independent
uniformly random
permutations

Q10/1 Q2

Correlated

• Q1, Q2 random perms s.t.
for a random secret Z

∀x : Q2(Q1(x ⊕ Z )⊕ Z ) = x

Hard for < 2n/2 queries!
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Summary

• New key-length extending construction for
block ciphers
• more efficient than triple encryption

(2 BC queries per invocation)
• more secure than triple encryption

(Triple cascade: up to 2κ+min{κ/2,n/2})
(Double XOR-cascade: up to 2κ+n/2)
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• Generic attacks supporting optimality
• one-query constructions insecure above 2max{κ,n}

• “injective” two-query constructions insecure above 2κ+n/2

Thank you!
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