How to Build Fully Secure Tweakable Blockciphers from Classical Blockciphers

Lei Wang, Jian Guo, Guoyan Zhang, Jingyuan Zhao, Dawu Gu

ASIACRYPT 2016 - Hanoi, Vietnam

L. Wang (SJTU) [How to Build Fully Secure TBCs](#page-39-0) December 7, 2016 1/33

[Introduction](#page-2-0)

- 2 [Target Construction](#page-13-0)
- 3 [Search among Instances](#page-20-0)

4 [Provable Security](#page-33-0)

[Conclusion](#page-37-0)

4 0 8 a. ← → э

Tweakable Blockcipher (TBC)

- additional parameter: public tweak t
- more natural primitive for modes of operation
	- \Diamond disk encryption, authenticated encryption, etc
- all wires have a size of n bits

classical blockcipher

tweakable blockcipher [LRW02]

つひひ

Tweakable Blockcipher (TBC)

- additional parameter: public tweak t
- more natural primitive for modes of operation
	- \Diamond disk encryption, authenticated encryption, etc
- all wires have a size of n bits

classical blockcipher

tweakable blockcipher [LRW02]

Find TBCs that can achieve full $2ⁿ$ provable security

L. Wang (SJTU) [How to Build Fully Secure TBCs](#page-0-0) December 7, 2016 3 / 33

from the scratch

- Hasty pudding cipher [Sch98], Mercy [Cro00], Threefish [FLS+08]
- a drawback: no security proof

 \leftarrow

from the scratch

- Hasty pudding cipher [Sch98], Mercy [Cro00], Threefish [FLS+08]
- a drawback: no security proof

from blockcipher constructions

- tweak luby-rackoff [GHL+07], generalized feistel [MI08], key-alternating [JNP14,CLS15], etc
- provable security bound: (at most) $2^{2n/3}$ [CLS15]
- still far from full $2ⁿ$ provable security

Three Approaches to Build TBCs

from blockcipher as a black-box

- tweak-dependent key (tdk): changing tweak values leads to rekeying blockciphers
- without using tdk
	- \circ LRW1/2 [LRW02], XEX [Rog04], CLRW2 [LST12], etc
	- \circ asymptotically approach full security [LS13]: $2^{sn/(s+2)}$ security with s blockcipher calls (low efficiency)
	- \circ in the standard model: blockcipher as PRP
- with using tdk
	- \diamond Minematsu's design [Min09], Mennink's design [Men15]
	- \Diamond full 2ⁿ provable security [Men15]: the only TBC claiming full $2ⁿ$ provable security
	- \circ in the ideal blockcipher model [Men15]

Mennink's Design [Men15]

- tweak-dependent key
- two blockcipher calls
- full 2^n provable security claimed

 \leftarrow

Mennink's Design [Men15]

- tweak-dependent key
- two blockcipher calls
- full 2^n provable security claimed

A key-recovery attack can be launched with a birthday-bound complexity

Key-recovery Attack on Mennink's Design F2

an observation

When $(t, c) = (0, 0)$, it has $y_1 = y_2$, and in turn $x_2 = 0$. Hence, by querying $(t = 0, c = 0)$ to decryption $\widetilde{F2}^{-1}$, the received $p = y_1 = E_k(0)$.

Key-recovery Attack on Mennink's Design F2

an observation

When $(t, c) = (0, 0)$, it has $y_1 = y_2$, and in turn $x_2 = 0$. Hence, by querying $(t = 0, c = 0)$ to decryption $\widetilde{F2}^{-1}$, the received $p = y_1 = E_k(0)$.

recover $E(k \oplus t, \text{const})$ for any t

- 1. query $(0, E(k, 0) \oplus t)$ to $F2$, get c, and compute $E(k,t) = c \oplus E(k,0);$
- 2. query $(t, E(k, t) \oplus \text{const})$ to $\overline{F2}$, get c and compute $E(k \oplus t, \text{const}) = c \oplus E(k,t).$

Key-recovery Attack on Mennink's Design F2

an observation

When $(t, c) = (0, 0)$, it has $y_1 = y_2$, and in turn $x_2 = 0$. Hence, by querying $(t = 0, c = 0)$ to decryption $\widetilde{F2}^{-1}$, the received $p = y_1 = E_k(0)$.

recover $E(k \oplus t, \text{const})$ for any t

1. query
$$
(0, E(k, 0) \oplus t)
$$
 to $\widetilde{F2}$, get *c*, and compute $E(k, t) = c \oplus E(k, 0)$;

2. query $(t, E(k, t) \oplus \text{const})$ to F2, get c and compute $E(k \oplus t, \text{const}) = c \oplus E(k,t).$

recover the key by a meet-in-the-middle procedure

Online. recover $E(k \oplus t, \text{const})$ for $2^{n/2}$ tweaks t ; **Offline.** compute $E(\ell, \text{const})$ for $2^{n/2}$ values $\ell;$ **Mi[t](#page-13-0)M.** re[c](#page-12-0)[o](#page-13-0)ver $k = \ell \oplus t$ from $E(k \oplus t, \text{const}) = E(\ell, \text{const}).$ $E(k \oplus t, \text{const}) = E(\ell, \text{const}).$

a small flaw in the original proof

In the proof, under the condition that the attacker cannot guess the key correctly (that is, (12a) defined in [M15] is not set), it claimed that the distribution of y_1 is independent from y_2 . However, when the tweak $t = 0$, both the two blockcipher calls share the same key, and therefore the distribution of their outputs are highly related.

patched $\widetilde{F2}$ by the designer: full $2ⁿ$ provable security

[Introduction](#page-2-0)

2 [Target Construction](#page-13-0)

[Search among Instances](#page-20-0)

[Provable Security](#page-33-0)

[Conclusion](#page-37-0)

4 0 8

⊜⊪

Þ

舌

The Target Construction

- \bullet a_{i,j}, b_{i,j} $\in \{0,1\}$
- simple XORs as linear mixing
- this talk focuses on the case of two blockcipher calls
	- \circ one blockcipher call with linear mixing can reach at most birthday-bound security [Men15]

Constraint 1

plaintext p must be used in exactly one linear mixing. Thus, one of ${b_{3,1}, b_{3,2}, b_{3,3}}$ is 1, and the other two are 0.

Constraint 1

plaintext p must be used in exactly one linear mixing. Thus, one of ${b_{3,1}, b_{3,2}, b_{3,3}}$ is 1, and the other two are 0.

Constraint 2

if y_1 is computed depending on plaintext p, it must not be used to compute z_2 . Thus, if $b_{1,3} = 1$, $a_{2,3}$ must be 0.

Constraint 1

plaintext p must be used in exactly one linear mixing. Thus, one of ${b_{3,1}, b_{3,2}, b_{3,3}}$ is 1, and the other two are 0.

Constraint 2

if y_1 is computed depending on plaintext p, it must not be used to compute z_2 . Thus, if $b_{1,3} = 1$, $a_{2,3}$ must be 0.

Constraint 3

if both y_1 and y_2 are computed depending on plaintext p, they must not be used both as inputs to the final linear mixing. Thus, if $b_{1,3}$ and $b_{2,4}$ are 1, $b_{3,4}$ must be 0.

 QQ

Constraint 1

plaintext p must be used in exactly one linear mixing. Thus, one of ${b_{3,1}, b_{3,2}, b_{3,3}}$ is 1, and the other two are 0.

Constraint 2

if y_1 is computed depending on plaintext p , it must not be used to compute z_2 . Thus, if $b_{1,3} = 1$, $a_{2,3}$ must be 0.

Constraint 3

if both y_1 and y_2 are computed depending on plaintext p, they must not be used both as inputs to the final linear mixing. Thus, if $b_{1,3}$ and $b_{2,4}$ are 1, $b_{3,4}$ must be 0.

Others

we always assume both blockciphers are indeed involved in the encrytion/decryption process.

- first and top-priority goal: full $2ⁿ$ provable security
- second goal: the minimum number of blockcipher calls
- third goal: (comparably) high efficiency of changing a tweak \Diamond start with (at most) one tweak-dependent key

[Introduction](#page-2-0)

- **[Target Construction](#page-13-0)**
- 3 [Search among Instances](#page-20-0)
	- **[Provable Security](#page-33-0)**

[Conclusion](#page-37-0)

4 0 8

⊜⊪

э

Three Types of Instances

According to the position of plaintext p (Constraint 1)

- Type I: $b_{1,3} = 1$, $b_{2,3} = 0$, $b_{3,3} = 0$
- Type II: $b_{1,3} = 0$, $b_{2,3} = 1$, $b_{3,3} = 0$
- Type III: $b_{1,3} = 0$, $b_{2,3} = 0$, $b_{3,3} = 1$

Constraint 1

plaintext p must be used in exactly one linear mixing. Thus, one of ${b_{3,1}, b_{3,2}, b_{3,3}}$ is 1, and the other two are 0.

L. Wang (SJTU) [How to Build Fully Secure TBCs](#page-0-0) December 7, 2016 16 / 33

Type I

divided into two cases

Case (1). z_1 is a tweak-dependent key

Case (2). z_2 is a tweak-dependent key

 \star each case is divided into 4 subcases depending on $(a_{1,1}, b_{1,1})$.

Type I

divided into two cases

Case (1). z_1 is a tweak-dependent key

Case (2). z_2 is a tweak-dependent key

 \star each case is divided into 4 subcases depending on $(a_{1,1}, b_{1,1})$.

search result

Type I instances with one tweak-dependent key have at most birthday-bound security.

L. Wang (SJTU) [How to Build Fully Secure TBCs](#page-0-0) December 7, 2016 17 / 33

Subcase (1.1) as an example

- $(a_{1,1}, b_{1,1}) = (0, 0);$
- the first blockcipher call is independent from k ;
- y_1 can be obtained by querying $E(\cdot, \cdot)$, and hence essentially one blockcipher call in attackers' view;
- at most birthday-bound security [M15]

つひひ

Subcase (1.2) as an example

$$
\bullet \ \ (a_{1,1},b_{1,1})=(0,1)
$$

an observation

for any pair (t,ρ,c) and (t',ρ',c') , it has that $c=c'$ implies $y_1 \oplus y_1' = b_{2,2} \cdot (t \oplus t').$

recover k by a meet-in-the-middle procedure

fix two distinct tweaks t and t' ; Online. collect $p \oplus k \oplus E_{t'}^{-1}$ $t_t^{-1}(E_t(p\oplus k)\oplus b_{2,2}\cdot (t\oplus t'))$ for $2^{n/2}$ distinct paintexts p; **Offline.** collect $\ell \oplus E_{t'}^{-1}$ $t_t^{-1}(E_t(\ell) \oplus b_{2,2}\cdot (t\oplus t'))$ for $2^{n/2}$ distinct $\ell;$ **MitM.** compute $k = p \oplus \ell$ from an online/offline collision

- two cases depending on z_1 or z_2 as a tweak-dependent key;
- each case is further divided into several subcases;
- 32 instances that no attack can be found

つひひ

← ロ → → ← 何 →

э

 $\widetilde{E13}$

4 日下

 \leftarrow \leftarrow \leftarrow

э

Þ

 $\widetilde{E30}$

Þ

• plaintext p and ciphertext c are *linearly* related. Hence Type III instances are not secure.

 $2Q$

[Introduction](#page-2-0)

- **[Target Construction](#page-13-0)**
- [Search among Instances](#page-20-0)
- 4 [Provable Security](#page-33-0)

[Conclusion](#page-37-0)

4 0 8

⊜⊪

Þ

Theorem

Let \widetilde{E} be any tweakable blockcipher construction from the set of $E1, \ldots, E32$. Let q be an integer such that $q < 2^{n-1}$. Then the following bound holds.

$$
\mathsf{Adv}_{\widetilde{E}}^{\widetilde{\operatorname{sprp}}}(q) \leq \frac{10q}{2^n}.
$$

Proof Sketch for E1

- the h-coefficient technique [P08, CS14]
- release k and $y = E(k, 0)$ to the distinguisher after the interaction and before the final decision
- \bullet distinguisher gets all the input-output tuples of E , divided into

\n- $$
\mathcal{T}^1 = \{(0, k, y) : y = E(k, 0)\};
$$
\n- $\mathcal{T}^2 = \{(z, x, y) : E(z, x) = y\}$ from queries to $\widetilde{E1}$ (the 2nd E);
\n- $\mathcal{T}^3 = \{(\ell, u, v) : E(\ell, u) = v\}$ from (offline) queries to E ;
\n

Good View

 $\mathcal{T}^1\cap\mathcal{T}^2=\mathcal{T}^1\cap\mathcal{T}^3=\mathcal{T}^2\cap\mathcal{T}^3=\emptyset\quad\Longrightarrow\quad$ the distinguisher fails.

Proof Sketch for E1

\n- Pr
$$
[\mathcal{T}^1 \cap \mathcal{T}^3 \neq \emptyset] \leq \frac{q}{2^n - q - 1};
$$
\n- Pr $[\mathcal{T}^1 \cap \mathcal{T}^2 \neq \emptyset] \leq \frac{2q}{2^n - q - 1};$
\n- Pr $[\mathcal{T}^2 \cap \mathcal{T}^3 \neq \emptyset] \leq \frac{2q^2}{(2^n - q - 1)^2};$
\n

upper bound of probability of bad events

Supposing $q < 2^{n-1}$, we have that

$$
\frac{q}{2^n-q-1}+\frac{2q}{2^n-q-1}+\frac{2q^2}{(2^n-q-1)^2}\leq \frac{10q}{2^n}
$$

 \leftarrow

[Introduction](#page-2-0)

- **[Target Construction](#page-13-0)**
- [Search among Instances](#page-20-0)

[Provable Security](#page-33-0)

4 0 8

⊜⊪

Þ

Conclusion

We find 32 TBCs with full $2ⁿ$ provable security

- each TBC uses two blockcipher calls
- save one blockcipher call by precomputing and storing the subkey

 \otimes/h stands for multiplications or universal hashes; tdk stands for the tweak-dependent key. 'N' refers to not using tdk, and 'Y' refers to using tdk; $|t|$ stands for the bit length of the tweak;

4 0 8

ÆP ⊳

Thank you <https://eprint.iacr.org/2016/876>

4 日下

∢ ⁄ ⊕ →

э