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Tweakable Blockcipher (TBC)

• additional parameter: public tweak t

• more natural primitive for modes of operation

� disk encryption, authenticated encryption, etc

• all wires have a size of n bits
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tweakable blockcipher [LRW02]

Goal of this work

Find TBCs that can achieve full 2n provable security
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Three Approaches to Build TBCs

from the scratch

• Hasty pudding cipher [Sch98], Mercy [Cro00], Threefish [FLS+08]

• a drawback: no security proof

from blockcipher constructions

• tweak luby-rackoff [GHL+07], generalized feistel [MI08],
key-alternating [JNP14,CLS15], etc

• provable security bound: (at most) 22n/3 [CLS15]

• still far from full 2n provable security
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Three Approaches to Build TBCs

from blockcipher as a black-box

• tweak-dependent key (tdk): changing tweak values leads to rekeying
blockciphers

• without using tdk

� LRW1/2 [LRW02], XEX [Rog04], CLRW2 [LST12], etc
� asymptotically approach full security [LS13]: 2sn/(s+2) security

with s blockcipher calls (low efficiency)
� in the standard model: blockcipher as PRP

• with using tdk

� Minematsu’s design [Min09], Mennink’s design [Men15]
� full 2n provable security [Men15]:

the only TBC claiming full 2n provable security
� in the ideal blockcipher model [Men15]
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Mennink’s Design [Men15]

• tweak-dependent key

• two blockcipher calls

• full 2n provable security claimed

t E

k

y1 ⊕
p

x2
E

k ⊕ t

y2 ⊕
c

A key-recovery attack can be launched with a birthday-bound complexity
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Key-recovery Attack on Mennink’s Design F̃2

an observation

When (t, c) = (0, 0), it has y1 = y2, and in turn x2 = 0. Hence, by

querying (t = 0, c = 0) to decryption F̃2
−1

, the received p = y1 = Ek(0).

0 E

k

y1 ⊕
p

0
E

k

y2 ⊕
0
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recover E (k ⊕ t, const) for any t

1. query (0,E (k, 0)⊕ t) to F̃2, get c , and compute
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querying (t = 0, c = 0) to decryption F̃2
−1

, the received p = y1 = Ek(0).

recover E (k ⊕ t, const) for any t

1. query (0,E (k, 0)⊕ t) to F̃2, get c , and compute
E (k , t) = c ⊕ E (k, 0);

2. query (t,E (k , t)⊕ const) to F̃2, get c and compute
E (k ⊕ t, const) = c ⊕ E (k , t).

recover the key by a meet-in-the-middle procedure

Online. recover E (k ⊕ t, const) for 2n/2 tweaks t;

Offline. compute E (`, const) for 2n/2 values `;

MitM. recover k = `⊕ t from E (k ⊕ t, const) = E (`, const).
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Remark on Flaw and Patch of F̃2

a small flaw in the original proof

In the proof, under the condition that the attacker cannot guess the key
correctly (that is, (12a) defined in [M15] is not set), it claimed that the
distribution of y1 is independent from y2. However, when the tweak t = 0,
both the two blockcipher calls share the same key, and therefore the
distribution of their outputs are highly related.

t E

2k

y1 ⊕
p

x2
E

k ⊕ t

y2 ⊕
c

patched F̃2 by the designer: full 2n provable security
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The Target Construction

• ai ,j , bi ,j ∈ {0, 1}
• simple XORs as linear mixing

• this talk focuses on the case of two blockcipher calls

� one blockcipher call with linear mixing can reach at most
birthday-bound security [Men15]

⊕b1,1 · k

b1,2 · t

b1,3 · p

x1
z1

b2,4 · y1
E

⊕a1,1 · k a1,2 · t

⊕b2,1 · k

b2,2 · t

b2,3 · p

x2
z2

b3,5 · y2
E

⊕a2,1 · k a2,2 · t a2,3 · y1

⊕b3,1 · k
b3,2 · t
b3,3 · p
b3,4 · y1

c
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Invertibility of Target Construction

Constraint 1

plaintext p must be used in exactly one linear mixing. Thus, one of
{b3,1, b3,2, b3,3} is 1, and the other two are 0.

Constraint 2

if y1 is computed depending on plaintext p, it must not be used to
compute z2. Thus, if b1,3 = 1, a2,3 must be 0.

Constraint 3

if both y1 and y2 are computed depending on plaintext p, they must not
be used both as inputs to the final linear mixing. Thus, if b1,3 and b2,4 are
1, b3,4 must be 0.

Others

we always assume both blockciphers are indeed involved in the
encrytion/decryption process.
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Design Goal

• first and top-priority goal: full 2n provable security

• second goal: the minimum number of blockcipher calls

• third goal: (comparably) high efficiency of changing a tweak

� start with (at most) one tweak-dependent key

L. Wang (SJTU) How to Build Fully Secure TBCs December 7, 2016 14 / 33



Outline

1 Introduction

2 Target Construction

3 Search among Instances

4 Provable Security

5 Conclusion

L. Wang (SJTU) How to Build Fully Secure TBCs December 7, 2016 15 / 33



Three Types of Instances

According to the position of plaintext p (Constraint 1)

• Type I: b1,3 = 1, b2,3 = 0, b3,3 = 0

• Type II: b1,3 = 0, b2,3 = 1, b3,3 = 0

• Type III: b1,3 = 0, b2,3 = 0, b3,3 = 1

⊕b1,1 · k

b1,2 · t

b1,3 · p

x1
z1 b2,4 · y1
E

⊕a1,1 · k a1,2 · t

⊕b2,1 · k
b2,2 · t
b2,3 · p

x2
z2 b3,5 · y2
E

⊕a2,1 · k a2,2 · t a2,3 · y1

⊕b3,1 · k
b3,2 · t
b3,3 · p
b3,4 · y1

c

Constraint 1

plaintext p must be used in exactly one linear mixing. Thus, one of
{b3,1, b3,2, b3,3} is 1, and the other two are 0.
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Type I

divided into two cases

Case (1). z1 is a tweak-dependent key

Case (2). z2 is a tweak-dependent key

? each case is divided into 4 subcases depending on (a1,1, b1,1).

⊕b1,1 · k

p

x1
z1

y1
E

⊕
a1,1 · k a1,2 · t

⊕
b2,1 · k

b2,2 · t

x2
z2

y2E

⊕
a2,1 · k a2,2 · t

⊕
b3,1 · k

c

search result

Type I instances with one tweak-dependent key have at most
birthday-bound security.
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Subcase (1.1) as an example

• (a1,1, b1,1) = (0, 0);

• the first blockcipher call is independent from k ;

• y1 can be obtained by querying E (·, ·), and hence essentially one
blockcipher call in attackers’ view;

• at most birthday-bound security [M15]

p

t

y1
E ⊕
b2,1 · k
b2,2 · t

x2

a2,1 · k

y2E ⊕
b3,1 · k

c
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Subcase (1.2) as an example

• (a1,1, b1,1) = (0, 1)

an observation

for any pair (t, p, c) and (t ′, p′, c ′), it has that c = c ′ implies
y1 ⊕ y ′1 = b2,2 · (t ⊕ t ′).

⊕k

p

x1

t

y1
E ⊕
b2,1 · k
b2,2 · t

x2

a2,1 · k

y2E ⊕
b3,1 · k

c
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Subcase (1.2) as an example

recover k by a meet-in-the-middle procedure

fix two distinct tweaks t and t ′;

Online. collect p ⊕ k ⊕ E−1t′ (Et(p ⊕ k)⊕ b2,2 · (t ⊕ t ′)) for 2n/2

distinct paintexts p;

Offline. collect `⊕ E−1t′ (Et(`)⊕ b2,2 · (t ⊕ t ′)) for 2n/2 distinct `;

MitM. compute k = p ⊕ ` from an online/offline collision

⊕k

p

x1

t

y1
E ⊕
b2,1 · k
b2,2 · t

x2

a2,1 · k

y2E ⊕
b3,1 · k

c
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Type II

• two cases depending on z1 or z2 as a tweak-dependent key;

• each case is further divided into several subcases;

• 32 instances that no attack can be found

⊕b1,1 · k

b1,2 · t

x1
z1 b2,4 · y1
E

⊕a1,1 · k a1,2 · t

⊕
b2,1 · k

p

x2
z2 y2
E

⊕a2,1 · k a2,2 · t a2,3 · y1

⊕
b3,1 · k
b3,4 · y1

c
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32 Plausible TBCs
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Ẽ6

0 E

k

y p ⊕k
E

k ⊕ t ⊕ y

⊕k
c

Ẽ7
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Ẽ15

k E

0

y p ⊕k
E

t ⊕ y

⊕k ⊕ y

c
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Ẽ27

k E

k

y p ⊕k
E

k ⊕ t ⊕ y

⊕y
c
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Type III

• plaintext p and ciphertext c are linearly related. Hence Type III
instances are not secure.

⊕b1,1 · k

b1,2 · t

x1
z1

b2,4 · y1
E

⊕a1,1 · k a1,2 · t

⊕b2,1 · k

b2,2 · t

x2
z2

b3,5 · y2
E

⊕a2,1 · k a2,2 · t a2,3 · y1

⊕b3,1 · k
b3,2 · t

p

b3,4 · y1

c
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Provable Security

Theorem

Let Ẽ be any tweakable blockcipher construction from the set of
Ẽ1, . . . , Ẽ32. Let q be an integer such that q < 2n−1. Then the following
bound holds.

Advs̃prp
Ẽ

(q) ≤ 10q

2n
.
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Proof Sketch for Ẽ1

• the h-coefficient technique [P08, CS14]

• release k and y = E (k , 0) to the distinguisher after the interaction
and before the final decision

• distinguisher gets all the input-output tuples of E , divided into

� T 1 = {(0, k, y) : y = E (k , 0)};
� T 2 = {(z , x , y) : E (z , x) = y} from queries to Ẽ1 (the 2nd E );
� T 3 = {(`, u, v) : E (`, u) = v} from (offline) queries to E ;

Good View

T 1 ∩ T 2 = T 1 ∩ T 3 = T 2 ∩ T 3 = ∅ =⇒ the distinguisher fails.

0 E

k

y ⊕p
E

k ⊕ t

⊕k
c

Ẽ1

u E

`

v
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Proof Sketch for Ẽ1

• Pr
[
T 1 ∩ T 3 6= ∅

]
≤ q

2n−q−1 ;

• Pr
[
T 1 ∩ T 2 6= ∅

]
≤ 2q

2n−q−1 ;

• Pr
[
T 2 ∩ T 3 6= ∅

]
≤ 2q2

(2n−q−1)2 ;

upper bound of probability of bad events

Supposing q < 2n−1, we have that

q

2n − q − 1
+

2q

2n − q − 1
+

2q2

(2n − q − 1)2
≤ 10q

2n

0 E

k

y ⊕p
E

k ⊕ t

⊕k
c

Ẽ1

u E

`

v
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Conclusion

We find 32 TBCs with full 2n provable security

• each TBC uses two blockcipher calls

• save one blockcipher call by precomputing and storing the subkey

• in the ideal blockcipher model

tweakable key security cost
tdk reference

blockciphers size (log2) E ⊗/h
LRW1 n n/2 1 0 N [LRW02]
LRW2 2n n/2 1 2 N [LRW02]

XEX n n/2 1 0 N [R04]

LRW2[2] 4n 2n/3 2 2 N [LST12]
LRW2[s] 2sn sn/(s + 2) s s N [LS13]

Min n max{n/2, n − |t|} 2 0 Y [M09]

F̃ [1] n 2n/3 1 1 Y [M15]

F̃ [2] n n/2 2 0 Y [M15]

patched F̃ [2] n n 2 0 Y [M15]

Ẽ1, . . . , Ẽ32 n n 2 (1) 0 Y Ours

⊗/h stands for multiplications or universal hashes;

tdk stands for the tweak-dependent key. ‘N’ refers to
not using tdk, and ‘Y’ refers to using tdk;

|t| stands for the bit length of the tweak;
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Thank you
https://eprint.iacr.org/2016/876
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