Déjà Q All Over Again: Tighter and Broader Reductions of *q*-Type Assumptions

Melissa Chase - MSR Redmond Mary Maller - University College London Sarah Meiklejohn - University College London

Subgroup Hiding \Rightarrow certain q-Type Assumptions

Example: Broadcast Encryption

Methods of delivering encrypted content over a broadcast channel where only qualified users can decrypt the content.

Example

Boneh Gentry and Waters' broadcast encryption scheme [BGW-Crypto05].

- Pairing based solution
- Short ciphertexts and private keys
- Collusion resistant

The *q*-BDHE Assumption

The BGW broadcast encryption scheme bases its security on the q-BDHE assumption [BGW-Crypto05].

Given

$$g,g^{c},g^{\alpha},\ldots,g^{\alpha^{q}},g^{\alpha^{q+2}},\ldots,g^{\alpha^{2q}}$$

it is hard to distinguish $e(g, g^c)^{q+1}$ from random.

The *q*-BDHE Assumption

The BGW broadcast encryption scheme bases its security on the q-BDHE assumption [BGW-Crypto05].

Given

$$g, g^c, g^{\alpha}, \ldots, g^{\alpha^q}, ?, g^{\alpha^{q+2}}, \ldots, g^{\alpha^{2q}}$$

it is hard to distinguish $e(g, g^c)^{q+1}$ from random.

Déjà Q: Using Dual Systems to Revisit *q*-Type Assumptions [CM-Eurocrypt14]

Subgroup Hiding & Parameter Hiding Specific classes of *q*-type assumptions in asymmetric bilinear groups of order $N = p_1 p_2^{-1}.$

Pr[break q-type assumption]

 $\leq O(q)$ Pr[break subgroup hiding]

¹Asymmetric composite order bilinear groups do exist - see [BRS-JNT11].

6/31

[CM-Eurocrypt14]: Contributions

		Computes
Source Group		
given info in one group	•	••
given info in both groups	•	•
Target Group		
given info in one group	•	••
siven info in both groups	😶 q-BDHE	•

Our Contributions: Broader

Our Contributions: Tighter

Subgroup Hiding & ⇒ Parameter Hiding Specific classes of *q*-type assumptions in asymmetric bilinear groups of order $N = p_1 p_2 p_3.$

Pr[break q-type assumption]

 $\leq O(\log q)$ Pr[break subgroup hiding]

Symmetric S

Conclusions

Outline of Presentation

Symmetric Schemes

10/31

Standard Bilinear Groups: $\mathcal{G} = (N, \mathbb{G}, \mathbb{H}, \mathbb{G}_T, e, g, h).$

- N = group order; prime or composite
- $\bullet |\mathbb{G}| = |\mathbb{H}| = kN, |\mathbb{G}_T| = \lambda N$
- $\mathbb{G} = \langle g \rangle, \mathbb{H} = \langle h \rangle$
- $e: \mathbb{G} \times \mathbb{H} \to \mathbb{G}_T$

Properties

Bilinearity: $e(g^a, h^b) = e(g, h)^{ab}$ Non-degeneracy: $e(x, y) = 1 \forall y \in \mathbb{H} \Rightarrow x = 1$.

Symmetric Sche

Subgroup Hiding [BGN - TCC05]

Symmetric Sche

Subgroup Hiding [BGN - TCC05]

12/31

Subgroup Hiding [BGN - TCC05]

$$r, s \leftarrow \mathbb{Z}_N$$
$$f(X) \leftarrow \mathbb{Z}_N[X]$$
$$x, y \leftarrow \mathbb{Z}_N$$

Outline of Presentation

Reductions we can Cover

Aim of Reduction

Aim of Reduction

Aim of Reduction

Aim of Reduction

Aim of Reduction

Aim of Reduction

Result

Then

Adv[Deciding $e(g, \hat{h})^{f(x)}$ from random] $\leq (3 + \log(q + 2)) \Pr[Breaks Subgroup Hiding]$

Result

Subgroup Hiding ጲ Parameter Hiding

Specific classes of *q*-type assumptions in asymmetric bilinear groups of order $N = p_1 p_2 p_3.$

Pr[break q-type assumption]

 $\leq O(\log q)$ Pr[break subgroup hiding]

Outline of Presentation

21/31

Example: Broadcast Encryption

Methods of delivering encrypted content over a broadcast channel where only qualified users can decrypt the content.

Example

Boneh Gentry and Waters' broadcast encryption scheme [BGW-Crypto05].

- Pairing based solution
- Short ciphertexts and private keys
- Collusion resistant

Broadcast Encryption

The asymmetric *q*-BDHE assumption:

given
$$\hat{h}, g^{\alpha}, h^{\alpha}, \dots, g^{\alpha^{q}}, h^{\alpha^{q}}, g^{\alpha^{q+2}}, h^{\alpha^{q+2}}, \dots, g^{\alpha^{2q}}, h^{\alpha^{2q}}$$

it is hard to distinguish $e(g, \hat{h})^{q+1}$ from random

is tightly implied by subgroup hiding and parameter hiding.

The BGW broadcast encryption scheme is implied by the symmetric q-BDHE assumption.

Symmetric Reductions

- The previous asymmetric reduction fails in the symmetric case.
- ► Adversary given components that would allow it to trivially break subgroup hiding in the symmetric case (e(G₁, H₂) = 1).
- Show how to push through the same reduction in the symmetric case by adding randomness from a fourth subgroup.

Symmetric schemes can also be translated into asymmetric groups.

The Asymmetric BGW Variant

Techniques from [AGOT-Crypto14].

Identity Based KEM [ACF-Eurocrypt09]

ABE Scheme [Waters08]

The less efficient construction.

HIBE Scheme [BBG-Eurocrypt05]

Outline of Presentation

Symmetric Schemes

29/31

Open Problems

- How secure are q-type assumptions in prime order groups?
- How secure are q-power knowledge of exponent assumptions (non-falsifiable assumptions)?
- How secure are q-type when the adversary has inputs from both source groups and the challenge component is also in the source group?

Thank-you for Listening.