

Statistical Fault Attacks on Nonce-Based Authenticated Encryption Schemes

C. Dobraunig¹, M. Eichlseder¹, T. Korak¹, V. Lomné², F. Mendel¹

AsiaCrypt 2016

¹ Graz University of Technology, Austria ² ANSSI, Paris, France

Overview

Fault attacks on AES-based AE-schemes

- Nonce does not preclude fault attacks
- Based on Fuhr et al. (FDTC 2013)
- Faults influence distribution

Experiments to show practical relevance

Statistical Fault Attack

Application to Authenticated Encryption

Requirements for the Attack

1 The inputs need to be different for each fault

2 The block cipher output needs to be known

Application to Authenticated Encryption

Authenticated encryption modes for block ciphers (ISO/IEC)

- CCM
- EAX
- GCM
- OCB

Attack on CCM

Attack on CCM

Attack on OCB

Attack on OCB

Application to other schemes

XEX-like Construction

■ Output masked by ∆_k

• $\Delta_k := \delta_k$

•
$$\Delta_k := \delta_k + \delta_n$$

•
$$\Delta_k := \delta_{k,n}$$

Example: COPA

Attack on COPA

 $L = E_k(0)$

9/21

Attack on COPA

 $L = E_k(0)$

Attack on COPA

Idea: Consider 2L as part of the last subkey

- $SK'_{10} := SK_{10} \oplus 2L$
- Apply SFA to recover SK'₁₀
- Repeat attack to either recover
 - *SK*₉ (in round 9) or
 - $SK_{10}'' := SK_{10} \oplus 2^2L$ of the next block the get SK_{10}
- \Rightarrow Attack complexity (number of needed faults) is doubled

XEX-like Construction

• Output masked by Δ_k

• $\Delta_k := \delta_k$

•
$$\Delta_k := \delta_k + \delta_n$$

•
$$\Delta_k := \delta_{k,n}$$

Tweakable Block Cipher

TWEAKEY framework

- Deoxys
- KIASU
- •

Attack on Deoxys[≠]

Similar to OCB

Attack on Deoxys[≠]

Similar to OCB

Attack on Deoxys[≠]

Deoxys-BC-256

Summary of Results

Primitive	Classification	Comments
CCM	basic	CTR
GCM	basic	CTR
EAX	basic	CTR
OCB	basic	XE
Cloc/Silc*	basic	CFB
OTR*	basic	XE
COPA*	XEX	
ELmD*	XEX	
SHELL*	XEX	
KIASU*	TBC	
Deoxys*	TBC	

* CAESAR candidates

Practical Verification/Implementation

Clock glitches

- General-purpose microcontroller
- AES software implementation
- AES hardware co-processor
- Laser fault injection
 - Smartcard microcontroller
 - AES hardware co-processor
- \Rightarrow Key-recovery with a small number of faulty ciphertexts

ATxmega 256A3

- Software implementation
- Single clock glitch

ATxmega 256A3

- Software implementation
- Multiple clock glitches

Smartcard Microcontroller

AES co-processor

Laser

Summary

- SFA is a powerful tool
- Nonce is not enough
- Attacks are not limited to AES-based modes

www.iaik.tugraz.at

Thank you

http://eprint.iacr.org/2016/616

www.iaik.tugraz.at

References

E. Biham and A. Shamir Differential Fault Analysis of Secret Key Cryptosystems CRYPTO 1997

D. Boneh, R. A. DeMillo, and R. J. Lipton On the Importance of Checking Cryptographic Protocols for Faults EUROCRYPT 1997

J. Blömer and V. Krummel Fault Based Collision Attacks on AES FDTC 2006

T. Fuhr, É. Jaulmes, V. Lomné, and A. Thillard Fault Attacks on AES with Faulty Ciphertexts Only FDTC 2013

C. Dobraunig, M. Eichlseder, T. Korak, V. Lomné, and F. Mendel Statistical Fault Attacks on Nonce-Based Authenticated Encryption Schemes ASIACRYPT 2016