CryptoDB
New Records in Collision Attacks on SHA-2
Authors: |
|
---|---|
Download: |
|
Presentation: | Slides |
Conference: | EUROCRYPT 2024 |
Abstract: | The SHA-2 family including SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224 and SHA512/256 is a U.S. federal standard published by NIST. Especially, there is no doubt that SHA-256 is one of the most important hash functions used in real-world applications. Due to its complex design compared with SHA-1, there is almost no progress in collision attacks on SHA-2 after ASIACRYPT 2015. In this work, we retake this challenge and aim to significantly improve collision attacks on the SHA-2 family. First, we observe from many existing attacks on SHA-2 that the current advanced tool to search for SHA-2 characteristics has reached the bottleneck. Specifically, longer differential characteristics could not be found, and this causes that the collision attack could not reach more steps. To address this issue, we adopt Liu et al.’s MILP-based method and implement it with SAT/SMT for SHA-2, where we also add more techniques to detect contradictions in SHA-2 characteristics. This answers an open problem left in Liu et al.’s paper to apply the technique to SHA-2. With this SAT/SMT-based tool, we search for SHA-2 characteristics by controlling its sparsity in a dedicated way. As a result, we successfully find the first practical semi-free-start (SFS) colliding message pair for 39-step SHA-256, improving the best 38-step SFS collision attack published at EUROCRYPT 2013. In addition, we also report the first practical free-start (FS) collision attack on 40-step SHA-224, while the previously best theoretic 40-step attack has time complexity 2^{110}. Moreover, for the first time, we can mount practical and theoretic collision attacks on 28-step and 31-step SHA-512, respectively, which improve the best collision attack only reaching 27 steps of SHA-512 at ASIACRYPT 2015. In a word, with new techniques to find SHA-2 characteristics, we have made some notable progress in the analysis of SHA-2 after the major achievements made at EUROCRYPT 2013 and ASIACRYPT 2015. |
BibTeX
@inproceedings{eurocrypt-2024-33921, title={New Records in Collision Attacks on SHA-2}, publisher={Springer-Verlag}, doi={10.1007/978-3-031-58716-0_6}, author={Yingxin Li and Fukang Liu and Gaoli Wang}, year=2024 }