CryptoDB
Huijing Gong
ORCID: 0000-0001-8284-6795
Publications
Year
Venue
Title
2025
CIC
Security Guidelines for Implementing Homomorphic Encryption
Abstract
<p> Fully Homomorphic Encryption (FHE) is a cryptographic primitive that allows performing arbitrary operations on encrypted data. Since the conception of the idea in [RAD78], it has been considered a holy grail of cryptography. After the first construction in 2009 [Gen09], it has evolved to become a practical primitive with strong security guarantees. Most modern constructions are based on well-known lattice problems such as Learning With Errors (LWE). Besides its academic appeal, in recent years FHE has also attracted significant attention from industry, thanks to its applicability to a considerable number of real-world use-cases. An upcoming standardization effort by ISO/IEC aims to support the wider adoption of these techniques. However, one of the main challenges that standards bodies, developers, and end users usually encounter is establishing parameters. This is particularly hard in the case of FHE because the parameters are not only related to the security level of the system, but also to the type of operations that the system is able to handle. In this paper we provide examples of parameter sets for LWE targeting particular security levels, that can be used in the context of FHE constructions. We also give examples of complete FHE parameter sets, including the parameters relevant for correctness and performance, alongside those relevant for security. As an additional contribution, we survey the parameter selection support offered in open-source FHE libraries. </p>
2023
CRYPTO
Revisiting Security Estimation for LWE with Hints from a Geometric Perspective
Abstract
The Distorted Bounded Distance Decoding Problem (DBDD) was introduced by Dachman-Soled et al. [Crypto ’20] as an intermediate problem between LWE and unique-SVP (uSVP). They presented an approach that reduces an LWE instance to a DBDD instance, integrates side information (or “hints”) into the DBDD instance, and finally reduces it to a uSVP instance, which can be solved via lattice reduction. They showed that this principled approach can lead to algorithms for side-channel attacks that perform better than ad-hoc algorithms that do not rely on lattice reduction.
The current work focuses on new methods for integrating hints into a DBDD instance. We view hints from a geometric perspective, as opposed to the distributional perspective from the prior work. Our approach provides the rigorous promise that, as hints are integrated into the DBDD instance, the correct solution remains a lattice point contained in the
specified ellipsoid.
We instantiate our approach with two new types of hints: (1) Inequality hints, corresponding to the region of intersection of an ellipsoid and a halfspace; (2) Combined hints, corresponding to the region of intersection of two ellipsoids. Since the regions in (1) and (2) are not necessarily ellipsoids, we replace them with ellipsoidal approximations that circumscribe the region of intersection. Perfect hints are reconsidered as the region of intersection of an ellipsoid and a hyperplane, which is itself an ellipsoid. The compatibility of “approximate,” “modular,” and “short vector” hints from the prior work is examined.
We apply our techniques to the decryption failure and side-channel attack settings. We show that “inequality hints” can be used to model decryption failures, and that our new approach yields a geometric analogue of the “failure boosting” technique of D’anvers et al. [ePrint, ’18]. We also show that “combined hints” can be used to fuse information from a decryption failure and a side-channel attack, and provide rigorous guarantees despite the data being non-Gaussian. We provide experimental data for both applications. The code that we have developed to implement the integration of hints and hardness estimates extends the Toolkit
from prior work and has been released publicly.
2021
TCC
BKW Meets Fourier: New Algorithms for LPN with Sparse Parities
📺
Abstract
We consider the Learning Parity with Noise (LPN) problem with a sparse secret, where the secret vector $\mathbf{s}$ of dimension $n$ has Hamming weight at most $k$. We are interested in algorithms with asymptotic improvement in the \emph{exponent} beyond the state of the art.
Prior work in this setting presented algorithms with runtime $n^{c \cdot k}$ for constant $c < 1$, obtaining a constant factor improvement over brute force search, which runs
in time ${n \choose k}$.
We obtain the following results:
- We first consider the \emph{constant} error rate setting, and in this case present a new algorithm that leverages a subroutine from the acclaimed BKW algorithm [Blum, Kalai, Wasserman, J.~ACM '03] as well as techniques from Fourier analysis for $p$-biased distributions. Our algorithm achieves asymptotic improvement in the exponent compared to prior work,
when the sparsity $k = k(n) = \frac{n}{\log^{1+ 1/c}(n)}$, where $c \in o(\log \log(n))$ and $c \in \omega(1)$. The runtime and sample complexity of this algorithm are approximately the same.
- We next consider the \emph{low noise} setting, where the error is subconstant. We present a new algorithm in this setting that requires only a \emph{polynomial}
number of samples and achieves asymptotic improvement in the exponent compared to prior work, when the sparsity $k = \frac{1}{\eta} \cdot \frac{\log(n)}{\log(f(n))}$ and noise rate of $\eta \neq 1/2$ and $\eta^2 = \left(\frac{\log(n)}{n} \cdot f(n)\right)$, for $f(n) \in \omega(1) \cap n^{o(1)}$. To obtain the improvement in sample complexity, we create subsets of samples using the \emph{design} of Nisan and Wigderson [J.~Comput.~Syst.~Sci. '94], so that any two subsets have a small intersection, while the number of subsets is large. Each of these subsets is used to generate a single $p$-biased sample for the Fourier analysis step. We then show that this allows us to bound the covariance of pairs of samples, which is sufficient for the Fourier analysis.
- Finally, we show that our first algorithm extends to the setting where the noise rate is very high $1/2 - o(1)$, and in this case can be used as a subroutine to obtain new algorithms for learning DNFs and Juntas. Our algorithms achieve asymptotic improvement in the exponent for certain regimes. For DNFs of size $s$ with approximation factor $\epsilon$ this regime is when $\log \frac{s}{\epsilon} \in \omega \left( \frac{c}{\log n \log \log c}\right)$, and $\log \frac{s}{\epsilon} \in n^{1 - o(1)}$, for $c \in n^{1 - o(1)}$. For Juntas of $k$ the regime is when $k \in \omega \left( \frac{c}{\log n \log \log c}\right)$, and $k \in n^{1 - o(1)}$, for $c \in n^{1 - o(1)}$.
2020
CRYPTO
LWE with Side Information: Attacks and Concrete Security Estimation
📺
Abstract
We propose a framework for cryptanalysis of lattice-based schemes, when side information --in the form of "hints''-- about the secret and/or error is available. Our framework generalizes the so-called primal lattice reduction attack, and allows the progressive integration of hints before running a final lattice reduction step. Our techniques for integrating hints include sparsifying the lattice, projecting onto and intersecting with hyperplanes, and/or altering the distribution of the secret vector. Our main contribution is to propose a toolbox and a methodology to integrate such hints into lattice reduction attacks and to predict the performance of those lattice attacks with side information.
While initially designed for side-channel information, our framework can also be used in other cases: exploiting decryption failures, or simply exploiting constraints imposed by certain schemes (LAC, Round5, NTRU), that were previously not known to (slightly) benefit from lattice attacks.
We implement a Sage 9.0 toolkit to actually mount such attacks with hints when computationally feasible, and to predict their performances on larger instances. We provide several end-to-end application examples, such as an improvement of a single trace attack on Frodo by Bos et al (SAC 2018). Contrary to ad-hoc practical attacks exploiting side-channel leakage, our work is a generic way to estimate security loss even given very little side-channel information.
Coauthors
- Jean-Philippe Bossuat (1)
- Rosario Cammarota (1)
- Ilaria Chillotti (1)
- Benjamin R. Curtis (1)
- Dana Dachman-Soled (3)
- Wei Dai (1)
- Léo Ducas (1)
- Huijing Gong (4)
- Erin Hales (1)
- Tom Hanson (1)
- Duhyeong Kim (1)
- Hunter Kippen (2)
- Bryan Kumara (1)
- Changmin Lee (1)
- Xianhui Lu (1)
- Carsten Maple (1)
- Alberto Pedrouzo-Ulloa (1)
- Rachel Player (1)
- Yuriy Polyakov (1)
- Mélissa Rossi (1)
- Luis Antonio Ruiz Lopez (1)
- Aria Shahverdi (1)
- Yongsoo Song (1)
- Donggeon Yhee (1)