CryptoDB
Tatsuya Ishikawa
Publications
Year
Venue
Title
2025
TCHES
AETHER: An Ultra-High Throughput and Low Energy Authenticated Encryption Scheme
Abstract
In this paper, we introduce AETHER, an authenticated encryption scheme that achieves ultra-high throughput and low energy consumption, supporting a 256- bit key and a 128-bit tag. While inspired by an AEGIS-like structure, AETHER stands out with a completely redesigned round-update function. We replace the AES round function with a new inner function optimized for ultra-low latency and energy consumption. This function incorporates Orthros’s S-box and a 16x16 binary matrix from Akleylek et al., leading to a 1.56 times reduction in energy consumption and a 1.25 times reduction in delay compared to the AES round function. To further optimize hardware performance, we design the general construction of the roundupdate function to be more hardware-friendly, allowing parallel execution of the inner function on all 128-bit words, thereby enhancing both throughput and security against collision-based forgery attacks. AETHER achieves a throughput of 2.1 Tbit/s and an energy consumption of only 204.31 nJ, in the Nangate 15 nm standard cell library and a throughput of 5.23 Tbit/s and energy consumption of 1.83 nJ using the CNFET-OCL 5nm library, outperforming all existing AEADs.
2024
TCHES
Gleeok: A Family of Low-Latency PRFs and its Applications to Authenticated Encryption
Abstract
In this paper, we propose a new family of low-latency pseudorandom functions (PRFs), dubbed Gleeok.Gleeok utilizes three 128-bit branches to achieve a 256-bit key size while maintaining low latency. The first two branches are specifically designed to defend against statistical attacks, especially for differential attacks, while the third branch provides resilience against algebraic attacks. This unique design enables Gleeok to offer ultralow latency while supporting 256-bit keys, setting it apart from existing ciphers dedicated to low-latency requirements. In addition, we propose wide-block variants having three 256-bit branches. We also present an application of Gleeok to short-input authenticated encryption which is crucial for memory encryption and various realtime communication applications. Furthermore, we present comprehensive hardware implementation results that establish the capabilities of Gleeok and demonstrate its competitiveness against related schemes in the literature. In particular, Gleeok achieves a minimum latency of roughly 360 ps with the NanGate 15 nm cell library and is thus on par with related low-latency schemes that only feature 128-bit keys while maintaining minimal overhead when equipped in an authenticated mode of operation.
Coauthors
- Ravi Anand (1)
- Subhadeep Banik (2)
- Andrea Caforio (2)
- Tatsuya Ishikawa (2)
- Takanori Isobe (2)
- Fukang Liu (1)
- Kazuhiko Minematsu (1)
- Mostafizar Rahman (2)
- Kosei Sakamoto (2)