International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Xingyu Yan

Publications

Year
Venue
Title
2025
CIC
Zero-Knowledge Proofs of Quantumness
<p> With the rapid development of quantum computers, proofs of quantumness have recently become an interesting and intriguing research direction. However, in all current schemes for proofs of quantumness, quantum provers almost invariably face the risk of being maliciously exploited by classical verifiers. In fact, through malicious strategies in interaction with quantum provers, classical verifiers could solve some instances of hard problems that arise from the specific scheme in use. In other words, malicious verifiers can break some schemes (that quantum provers are not aware of) through interaction with quantum provers. All this is due to the lack of formalization that prevents malicious verifiers from extracting useful information in proofs of quantumness.</p><p>To address this issue, we formalize zero-knowledge proofs of quantumness. Intuitively, the zero-knowledge property necessitates that the information gained by the classical verifier from interactions with the quantum prover should not surpass what can be simulated using a simulated classical prover interacting with the same verifier. As a result, the new zero-knowledge notion can prevent any malicious verifier from exploiting quantum advantage. Interestingly, we find that the classical zero-knowledge proof is sufficient to compile some existing proofs of quantumness schemes into zero-knowledge proofs of quantumness schemes.</p><p>Due to some technical reason, it appears to be more general to require zero-knowledge proof on the verifier side instead of the prover side. Intuitively, this helps to regulate the verifier's behavior from malicious to be honest-but-curious. As a result, both parties will play not only one role in the proofs of quantumness but also the dual role in the classical zero-knowledge proof.</p><p>Specifically, the two principle proofs of quantumness schemes: Shor's factoring-based scheme and learning with errors-based scheme in [Brakerski et al, FOCS, 2018], can be transformed into zero-knowledge proofs of quantumness by requiring an extractable non-interactive zero-knowledge argument on the verifier side. Notably, the zero-knowledge proofs of quantumness can be viewed as an enhanced security notion for proofs of quantumness. To prevent malicious verifiers from exploiting the quantum device's capabilities or knowledge, it is advisable to transition existing proofs of quantumness schemes to this framework whenever feasible. </p>
2024
ASIACRYPT
Adaptive Hardcore Bit and Quantum Key Leasing over Classical Channel from LWE with Polynomial Modulus
Quantum key leasing, also known as public key encryption with secure key leasing (PKE-SKL), allows a user to lease a (quantum) secret key to a server for decryption purpose, with the capability of revoking the key afterwards. In the pioneering work by Chardouvelis et al (arXiv:2310.14328), a PKE-SKL scheme utilizing classical channels was successfully built upon the noisy trapdoor claw-free (NTCF) family. This approach, however, relies on the superpolynomial hardness of learning with errors (LWE) problem, which could affect both efficiency and security of the scheme. In our work, we demonstrate that the reliance on superpolynomial hardness is unnecessary, and that LWE with polynomial-size modulus is sufficient to achieve the same goal. Our approach enhances both efficiency and security, thereby improving the practical feasibility of the scheme on near-term quantum devices. To accomplish this, we first construct a noticeable NTCF (NNTCF) family with the adaptive hardcore bit property, based on LWE with polynomial-size modulus. To the best of our knowledge, this is the first demonstration of the adaptive hardcore bit property based on LWE with polynomial-size modulus, which may be of independent interest. Building on this foundation, we address additional challenges in prior work to construct the first PKE-SKL scheme satisfying the following properties: (i) the entire protocol utilizes only classical communication, and can also be lifted to support homomorphism. (ii) the security is solely based on LWE assumption with polynomial-size modulus. As a demonstration of the versatility of our noticeable NTCF, we show that an efficient proof of quantumness protocol can be built upon it. Specifically, our protocol enables a classical verifier to test the quantumness while relying exclusively on the LWE assumption with polynomial-size modulus.