CryptoDB
Felix Engelmann
Publications
Year
Venue
Title
2024
ASIACRYPT
Updatable Privacy-Preserving Blueprints
Abstract
Privacy-preserving blueprint schemes (Kohlweiss et al., EUROCRYPT'23) offer a mechanism for safeguarding user's privacy while allowing for specific legitimate controls by a designated auditor agent. These schemes enable users to create escrows encrypting the result of evaluating a function y=P(t,x), with P being publicly known, t a secret used during the auditor's key generation, and x the user's private input.
Crucially, escrows only disclose the blueprinting result y=P(t,x) to the designated auditor, even in cases where the auditor is fully compromised.
The original definition and construction only support the evaluation of functions P on an input x provided by a single user.
We address this limitation by introducing updatable privacy-preserving blueprint schemes (UPPB), which enhance the original notion with the ability for multiple users to non-interactively update the private user input x while blueprinting.
Moreover, UPPBs contain a proof that y is the result of a sequence of valid updates, while revealing nothing else about the private inputs {x_i} of updates.
As in the case of privacy-preserving blueprints, we first observe that UPPBs can be realized via a generic construction for arbitrary predicates P based on FHE and NIZKs.
Our main result is uBlu, an efficient instantiation for a specific predicate comparing the values x and t, where x is the cumulative sum of users' private inputs and t is a fixed private value provided by the auditor in the setup phase.
This rather specific setting already finds interesting applications
such as privacy-preserving anti-money laundering and location tracking, and can be extended to support more generic predicates.
From the technical perspective, we devise a novel technique to keep the escrow size concise, independent of the number of updates, and reasonable for practical applications. We achieve this via a novel characterization of malleability for the algebraic NIZK by Couteau and Hartmann (CRYPTO’20) that allows for an additive update function.
Coauthors
- Bernardo David (1)
- Felix Engelmann (1)
- Tore Kasper Frederiksen (1)
- Markulf Kohlweiss (1)
- Elena Pagnin (1)
- Mikhail Volkhov (1)