CryptoDB
Yuval Efron
Publications
Year
Venue
Title
2025
EUROCRYPT
Juggernaut: Efficient Crypto-Agnostic Byzantine Agreement
Abstract
It is well known that a trusted setup allows one to solve the Byzantine agreement problem in the presence of t < n/2 corruptions, bypassing the setup-free t < n/3 barrier. Alas, the overwhelming majority of protocols in the literature have the caveat that their security crucially hinges on the security of the cryptography and setup, to the point where if the cryptography is broken, even a single corrupted party can violate the security of the protocol. Thus these protocols provide higher corruption resilience (n/2 instead of n/3) for the price of increased assumptions. Is this trade-off necessary?
We further the study of _crypto-agnostic_ Byzantine agreement among n parties that answers this question in the negative. Specifically, let t_s and t_i denote two parameters such that (1) 2t_i + t_s < n, and (2) t_i <= t_s < n/2. Crypto-agnostic Byzantine agreement ensures agreement among honest parties if (1) the adversary is computationally bounded and corrupts up to t_s parties, or (2) the adversary is computationally unbounded and corrupts up to t_i parties, and is moreover given all secrets of all parties established during the setup. We propose a compiler that transforms any pair of resilience-optimal Byzantine agreement protocols in the authenticated and information-theoretic setting into one that is crypto-agnostic. Our compiler has several attractive qualities, including using only O(lambda n^2) bits over the two underlying Byzantine agreement protocols, and preserving round and communication complexity in the authenticated setting. In particular, our results improve the state-of-the-art bit complexity by at least two factors of n and provide either early stopping (deterministic) or expected constant round complexity (randomized). We therefore provide fallback security for authenticated Byzantine agreement _for free_ for t_i <= n/4.
2025
EUROCRYPT
Good Things Come to Those Who Wait: Dishonest-Majority Coin-Flipping Requires Delay Functions
Abstract
We reconsider Cleve's famous 1986 impossibility result on coin-flipping without an honest majority. Recently proposed constructions have circumvented this limit by using cryptographic delay functions. We show that this is necessary: a (weak) notion of delay functions is in fact implied by the existence of a protocol circumventing Cleve's impossibility. However, such delay functions are weaker than those used in existing constructions. We complete our result by showing an equivalence, that these weaker delay functions are also sufficient to construct not just fair dishonest-majority coin-flipping protocols, but also the stronger notion of a distributed randomness beacon. We also show that this is possible in a weaker communication model than previously considered, without the assumption of reliable broadcast or a public bulletin board.
Coauthors
- Joseph Bonneau (1)
- Benedikt Bünz (1)
- Miranda Christ (1)
- Daniel Collins (1)
- Yuval Efron (2)
- Jovan Komatovic (1)